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a b s t r a c t

This article proposes a parsimonious alternative approach for modeling the stochastic dynamics of
mortality rates. Instead of the commonly used factor-based decomposition framework, we consider
modeling mortality improvements using a random field specification with a given causal structure. Such
a class of models introduces dependencies among adjacent cohorts aiming at capturing, among others,
the cohort effects and cross generations correlations. It also describes the conditional heteroskedasticity
of mortality. The proposedmodel is a generalization of the nowwidely used AR-ARCHmodels for random
processes. For such a class of models, we propose an estimation procedure for the parameters. Formally,
we use the quasi-maximum likelihood estimator (QMLE) and show its statistical consistency and the
asymptotic normality of the estimated parameters. The framework being general, we investigate and
illustrate a simple variant, called the three-level memory model, in order to fully understand and assess
the effectiveness of the approach for modeling mortality dynamics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The forecast of future mortality improvements poses a chal-
lenge not only for public retirement systems planning but also for
the private life annuities business, due to the continuous longevity
improvement. For public policy, as well as for the management of
financial institutions, it is important to forecast future mortality
rates in order to quantify the risk underlying their pension and
annuities portfolios. To this end, a variety of models have been
introduced in the literature during the last decades.

Most notably, there are the so-called factor-based models
widely in use by practitioners, which know an increasing recog-
nition from the actuarial community. These traditional mortality
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models rely on a factor-based decomposition of mortality surface.
These factors are intended to capture the complex patterns of
mortality evolution over time. Although these models are quite
intuitive, their statistical properties are, however, not accurately
understood. For instance, in their seminal and influentialwork, Lee
and Carter (1992) have proposed amodel that decomposesmortal-
ity surface into a latent trend, and two corresponding age-sensitive
parameters, see also Brouhns et al. (2002). The other models
that followed extend the idea underlying the Lee and Carter’s
(1992)model by adding amixture of additional componentswhich
capture age, period and, in some cases, cohort effects. As noted
by Mavros et al. (2017), ‘‘the number and formof these types of effects
is usually what distinguishes one model from another ’’. However,
some recent works show their limits, e.g. Giacometti et al. (2012),
Chai et al. (2013), Hunt andVillegas (2015) andMavros et al. (2017)
among others. In particular, one of the main drawbacks of these
classical models relates to the assumption of the homoskedasticity
of their residuals. In fact, the assumption of constant variance is
always violated in practice as it is time varying, see e.g. Lee and
Miller (2001) and Gao and Hu (2009). Furthermore, the mortality
evolution is known to be related to the age of birth, see Willets
(2004). This is generally referred to as the cohort effect and trans-
lates the persistent of some shocks on mortality among cohorts.
It is observed when plotting the residuals of some models that
rely on age and period factors as an apparent diagonal structure.
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These observations point to a need for additional univariate cohort-
dependent process in some countries. Such a phenomenonhas lead
to various extensions, in the literature, of the initial Lee–Carter
model, e.g. Renshaw and Haberman (2006) or Cairns et al. (2009).
The incorporation of the cohort-specific process, for instance, has
been suggested to overcome the so-called non-stationary effect,
which corresponds to the diagonal structure observed in the plot-
ting of the age–period models’ residuals. Even if this undesired
remaining diagonal effect is, generally, accommodated, it is still
unclear how such a cohort-effect can be interpreted and identified,
see Hunt and Villegas (2015). This is even more appealing in
view of some recent empirical findings. These praise the goodness-
of-fit performance of age–period–cohort models specification but
meanwhile shed light on their instable forecasting performance.
Furthermore, these mainstream models are over-parameterized
and have tendency to over-fit and thus produce less reliable fore-
casts.

It is of course very important to tackle these limitations when
considering a new modeling approach, but it is also essential to
take into account the dependence structure between adjacent
cohorts. Indeed, some recent works, and even common intu-
ition, point out the importance of cross-cohorts correlation, see
e.g. Loisel and Serant (2007) and Jevtić et al. (2013). In their
empirical work, Loisel and Serant (2007) show that correlation
among close generations is higher enough to be omitted. The same
conclusions were drawn in the very recent work of Mavros et al.
(2017).

In this paper, in contrast to this univariate factor-based frame-
work, we approach the problem of modeling mortality rates
by considering the whole surface of mortality improvements
as a sole random field without any further assumption on the
particular dependence structure neither the factors driving its
evolution. Thus, unlikemainstreamapproach, ourmodeling frame-
work is intended to accommodate cross-cohorts dependence as
well as conditional heteroskedasticity. The starting point of our
approach is a formulation of themortality random field in the sense
of Doukhan and Truquet (2007)with a given causal structure. Such
a class ofmodels introduces dependencies among adjacent cohorts
aiming at capturing, among others, the cohort effects and cross-
generations correlations. It also takes into account the conditional
heteroskedasticity of mortality. The proposed model is a gener-
alization of the now widely used AR-ARCH models for random
processes. More formally, the conditional mean and variance of
mortality rates are respectively described by linear combinations
of the observed rates and their squared values on a given neigh-
borhood. In Section 2, we fully describe the model and give some
intuitions on its construction. The specification of the causality
structure is discussed and some first results on the stability as well
as the identification of the model are introduced. For such a class
of models, we also propose a robust estimation procedure for the
parameters.

The rest of the paper is organized as follows. In Section 3, we
use the quasi-maximum likelihood estimator (QMLE) to estimate
the parameters. Its statistical consistency and asymptotic normal-
ity are shown. The framework being general, we investigate and
illustrate a simple variant, called the three-level memory model,
in order to fully understand and assess the effectiveness of the ap-
proach for modeling mortality dynamics. This three-level memory
level incorporates the correlationswith the immediate cohorts and
it is intended to capture the cohort effect in a natural manner. In
Section 4, themodel is applied to the populations of US, France and
England&Wales, and is compared to the benchmarkmodels of Lee
and Carter (1992) and Cairns et al. (2006) two-factor models.

2. Random fields memory models

2.1. From classical mortality models to a random field memory for-
mulation

Denote by m(a,t) the crude death rate at age a and date t . Time
is assumed to be measured in years, so that calendar year t has the
meaning of the time interval [t, t + 1). For expository purpose and
since we will be working with only a subset of historical data, we
will henceforth re-index the observable ages by a = 0, 1, . . . , I−1
and the observable dates by t = 0, 1, . . . , J − 1; where I and J are,
respectively the number of ages and years. Here, we introduce two
benchmark models for mortality dynamics in order to motivate
the development of the random field model discussed later on this
section.We limit ourselves to thesemodels for simplicity and other
modeling frameworks are briefly discussed.

Classical mortalitymodels. In their seminal paper, Lee and Carter
(1992) postulated that the (log)mortality rates at different ages are
captured by a common factor, and an age-specific coefficient with
respect to this common trend. More precisely, we have for any a
and t

logm(a,t) = αa + βaκt + ϵ(a,t), with ϵ(a,t) ∼ N (0, σ ) (1)

where αa is the time average level of logm(a,t) at age a, κt is
the common factor also known as the period mortality effect and
βa is the age-specific sensitivity coefficient with respect to κt .
Another interesting model was suggested by Cairns et al. (2006)
and assumes that the one-year death mortality rates dynamics are
given by the following modeling form:

logit q(a,t) = κ
(1)
t + κ

(2)
t (a − ā) + ϵ(a,t), with ϵ(a,t) ∼ N (0, σ ) (2)

where κ
(1)
t and κ

(2)
t are two time varying stochastic period factors

and ā is the mean of the ages in the data. The innovation ϵ(a,t) is
assumed to be drawn from an i.i.d. zero-mean Gaussian random
variable with constant variance σ 2. Suchmodels describe the prin-
cipal mortality dynamics in the sense that it includes the age re-
lated basis component and all of the non-stationary stochastic part
of the mortality surface. The time-dependent parameters in both
models are generally modeled using a simple ARIMA(0,1,0) model.
On the other hand, recent works on mortality demonstrated the
existence of the so-called cohort effect which makes the mortality
depend not only on the age and calendar year but also on the year
of birth. Over all, this advocates the inclusion of an additional factor
γt−a being dependent on the year of birth t − a, see Renshaw
and Haberman (2006), Cairns et al. (2009) and Hunt and Villegas
(2015).

One of the drawbacks of these classical models relates to the
assumption of homoskedastic error terms ϵ(a,t). In fact, in practice,
the assumption of constant variance is always violated: the ob-
served logarithm of central death rates is much more variable and
the volatility is time varying, see e.g. Lee andMiller (2001) andGao
and Hu (2009). Furthermore, the mortality evolution is known to
be related to the age of birth, see Willets (2004). This is referred to
as the cohort effect and translates the persistent of some shocks on
mortality among cohorts. This is generally observed when plotting
the residuals ϵ(a,t) of models (1) and (2) as an apparent diagonal
structure which requires additional univariate cohort processes
in some countries. As noted above, this phenomenon has led to
various extensions of the initial Lee–Carter model by introduc-
ing factors γt−a dependent on the year of birth, e.g. Renshaw
and Haberman (2006) or Cairns et al. (2009) and the reference
therein. However, the inclusion of additional univariate processes
enhances the goodness-of-fit of themodel but over-fit the data and
thus produces less reliable forecasts, see Hunt and Villegas (2015).
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