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a b s t r a c t

Recently Haezendonck–Goovaerts (H–G) risk measure has received much attention in (re)insurance and
portfolio management. Some nonparametric inferences have been proposed in the literature. When
the loss variable does not have enough moments, which depends on the involved Young function, the
nonparametric estimator in Ahn and Shyamalkumar (2014) has a nonnormal limit, which challenges
interval estimation. Motivated by the fact that many loss variables in insurance and finance could have a
heavier tail such as an infinite variance, this paper proposes a new estimator which estimates the tail
by extreme value theory and the middle part nonparametrically. It turns out that the proposed new
estimator always has a normal limit regardless of the tail heaviness of the loss variable. Hence an interval
with asymptotically correct confidence level can be obtained easily either by the normal approximation
method via estimating the asymptotic variance or by a bootstrap method. A simulation study and real
data analysis confirm the effectiveness of the proposed new inference procedure for estimating the H–G
risk measure.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Risk management generally involves risk identification, risk
quantification, and risk prediction. Measuring a risk and quan-
tifying its uncertainty is an important task. Recently a so-called
Haezendonck–Goovaerts (H–G) risk measure has received much
attention in actuarial science with applications to optimal portfo-
lio management and optimal reinsurance policy; see Bellini and
Gianin (2008a, b), Cheung and Lo (2013), Zhu et al. (2013), and
references therein.

Let ψ : [0,∞] → [0,∞] be a convex function satisfying
ψ(0) = 0, ψ(1) = 1 and ψ(∞) = ∞, i.e., ψ is a so-called
normalized Young function. For a number q ∈ (0, 1) and each
β > 0, let α = α(β) be a solution to

E
{
ψ

(
(X − β)+

α

)}
= 1 − q, (1)

where x+ = max(x, 0). Then, Haezendonck and Goovaerts (1982)
proposed the so-called H–G risk measure at level q as

θ = inf
β>0

{β + α(β)}. (2)
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Some important properties and connections with other risk mea-
sures are given in Goovaerts et al. (2012). For example, ifψ(x) = x,
then α(β) =

1
1−qE{(X − β)+} and θ =

1
1−qE{(X − F−(q))+},

where F (x) = P(X ≤ x) and F−(x) denotes the inverse function of
F (x). Hence, in this case, the H–G risk measure equals the expected
shortfall.

In order to employ this risk measure in practice, an efficient
statistical inference is needed. Ahn and Shyamalkumar (2014) first
proposed a nonparametric estimation and derived its asymptotic
limit, which may be nonnormal when the loss variable has no
enough moments, which depends on the involved Young function
ψ . When the limit is normal, Peng et al. (2015) developed an em-
pirical likelihood method to effectively construct an interval when
the H–G risk measure is defined at a fixed level. Further, Wang and
Peng (2016) showed that this empirical likelihood method is still
valid for an intermediate level, which leads to a unified interval
estimator of the H–G risk measure at either a fixed level or an
intermediate level. We refer to Owen (2001) for an overview of
empirical likelihood methods, which has been shown to be quite
effective in interval estimation and hypothesis test. Properties of
the H–G risk measure at an extreme level are available in Tang and
Yang (2012), Tang and Yang (2014) and Mao and Hu (2012).

To better understand the inference issue, we formulate the H–
G risk measure as a solution to the following estimating equations.
Suppose X, X1, . . . , Xn are independent and identically distributed
random variables with distribution function F (x). Since the H–
G risk measure is equivalent to solving the following estimating
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Fig. 1. Left panel: Danish fire losses to building and contents; Middle panel: Hill estimate for losses to building; Right panel: Hill estimate for losses to contents.

equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
E
{
ψ

(
Xi − β

θ − β

)
I(Xi > β)

}
= 1 − q,

E
{
ψ ′

(
Xi − β

θ − β

)
(Xi − θ )I(Xi > β)

}
= 0

(3)

for some β and θ > β under some conditions (see Tang and Yang
2014), one can estimate β and θ by solving⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
n

n∑
i=1

ψ

(
Xi − β

θ − β

)
I(Xi > β) = 1 − q,

1
n

n∑
i=1

ψ ′

(
Xi − β

θ − β

)
(Xi − θ )I(Xi > β) = 0,

(4)

which will result in a nonnormal limit when either

E
{
ψ

(
Xi − β0

θ0 − β0

)
I(Xi > β0)

}2

= ∞ or

E
{
ψ ′

(
Xi − β0

θ0 − β0

)
(Xi − θ0)I(Xi > β0)

}2

= ∞,

(5)

where θ0 and β0 denote the true values of θ and β , respectively.
This makes interval estimation nontrivial since one has to employ
different methods to separately deal with the cases of having a
normal limit and a nonnormal limit.

Practically it is often observed that loss data in insurance have a
heavy tailed distribution and even have an infinite variance, which
implies that (5) holds quite frequently. Particularly this paper is
motivated by analyzing the Danish fire loss data (see left panel in
Fig. 1), which consists of losses to building and losses to contents.
The data were collected at the Copenhagen Reinsurance Company
and comprise 2167 fire losses over the period 1980 to 1990. By
assuming that

lim
t→∞

1 − F (tx)
1 − F (t)

= x−1/γ for x > 0, (6)

i.e., 1 − F has a heavy tail with tail index 1/γ , γ can be estimated
by the well-known Hill estimator

γ̂ (k) =
1
k

k∑
i=1

log
Xn,n−i+1

Xn,n−k
, (7)

where Xn,1 ≤ · · · ≤ Xn,n denote the order statistics of X1, . . . , Xn,
k = k(n) → ∞ and k/n → 0 as n → ∞; see Hill (1975) for details.
Note that (6) implies that EXd

+
< ∞ for d < 1/γ and EXd

+
=

∞ for d > 1/γ . Moreover (6) holds for many commonly used
loss distributions in insurance such as Pareto distribution, inverse
gamma distribution, student t distribution, Cauchy distribution,

Burr distribution, Log-gamma distribution, etc. The middle and
right panels in Fig. 1 show that γ is between 0.5 and 1, which
implies that EX+ < ∞ but EX2

+
= ∞. Therefore, when ψ(x) =

ψr (x) = xr with some r > 1, the nonparametric estimator of
the H–G risk measure based on (4) has a nonnormal limit, which
makes interval estimation nontrivial and it generally requires a
subsample bootstrap method.

Motivated by the idea of estimating the mean of a heavy-tailed
distribution in Peng (2001) and Peng (2004) and the expected
shortfall of a heavy-tailed loss variable in Necir and Meraghni
(2009), this paper proposes to separately estimate the expectations
in (3) by two parts: semi-parametric estimation for the tail and
nonparametric estimation for the middle part. It turns out the
proposed newestimatorwill always have a normal limit regardless
of the tail heaviness of X . Hence interval estimation can be done by
using either the normal approximation method via estimating the
asymptotic variance or a bootstrapmethod. In the simulation study
and data analysis below, we simply employ the naive bootstrap
method, i.e., resample directly from original data, and a compar-
ison study shows that a blind application of methods without
considering a nonnormal limit would forecast risk inaccurately.

We organize this paper as follows. Section 2 presents the new
methodologies and main results for estimating the H–G risk mea-
sure at both a fixed level and an intermediate level. A simulation
study is given in Section 3. Analysis of the Danish fire loss data is
presented in Section 4. All proofs are put in Section 5.

2. Methodologies and main results

Throughout we assume X, X1, . . . , Xn are independent and
identically distributed randomvariableswith distribution function
F satisfying (6), and⎧⎨⎩
ψ(x) is a normalized Young function with ψ ′(0) < ∞ and
continuous second derivatives on (0,∞), and satisfies
limx→∞

ψ ′′(x)
r(r−1)xr−2 = d0 > 0 for some r > 1.

(8)

Since we want to estimate the tail semiparametrically, it is neces-
sary to specify an approximation rate in (6) as usual in the context
of extreme value theory for controlling the bias of an employed tail
probability estimator. Put F̄ (x) = 1− F (x) and let F̄−(t) denote the
inverse function of F̄ (t). Then it is known that (6) is equivalent to

lim
t→0

F̄−(tx)
F̄−(t)

= x−γ for x > 0.

Hence we assume there exists a function A(t) → 0 with a constant
sign near zero such that

lim
t→0

F̄−(tx)
F̄−(t)

− x−γ

A(t)
= x−γ x

ρ
− 1
ρ

(9)
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