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a b s t r a c t

We consider the problem of simulating loss probabilities and conditional excesses for linear asset port-
folios under the t-copula model. Although in the literature on market risk management there are papers
proposing efficient variance reductionmethods for Monte Carlo simulation of portfolio market risk, there
is no paper discussing combining the randomized quasi-Monte Carlo method with variance reduction
techniques. In this paper, we combine the randomized quasi-Monte Carlo method with importance
sampling and stratified importance sampling. Numerical results for realistic portfolio examples suggest
that replacing pseudorandom numbers (Monte Carlo) with quasi-random sequences (quasi-Monte Carlo)
in the simulations increases the robustness of the estimates once we reduce the effective dimension and
the impact of the non-smoothness of the integrands.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Market risk management deals with the estimation of loss
distribution of a portfolio of assets over a fixed time horizon. The
widely used riskmeasures Value-at-Risk (VaR) and expected short-
fall require accurate estimates of loss probability and conditional
excess under a realistic model that captures dependence structure
of the log-returns of multiple assets. As a flexible and accurate
model for the logarithmic returns of stocks, we use the t-copula
dependence structure and marginals following the generalized
hyperbolic distribution (see Embrechts et al., 2002; Mashal et al.,
2003; Prause, 1997; Glasserman et al., 2002). Furthermore, a more
generalized version of the t-copula model is proposed by Demarta
and McNeil (2005), and it has been also used in finance (see, e.g.,
Sun et al., 2008).

As there are no closed-form analytical results for loss probabil-
ity and conditional excess under the t-copula model, we need to
use a computational method like Monte Carlo simulation. In most
cases, Monte Carlo simulation is a better alternative compared
to other methods as it leads to error bounds on the estimated
values. Due to the fact that Monte Carlo simulation has a slow
convergence rate of O(1/

√
n), we need to increase the efficiency

of the estimates using variance reduction techniques. There are
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papers proposing variance reduction methods in portfolio market
risk estimation (see, e.g., Glasserman et al., 2002; Broadie et al.,
2011; Başoğlu et al., 2013).

An alternative to Monte Carlo simulation is the quasi-Monte
Carlo method (QMC), which uses low-discrepancy sequences in-
stead of pseudorandom numbers. The rate of convergence of the
quasi-Monte Carlo method is close to O(1/n), which is faster
than O(1/

√
n). However, an error bound under plain QMC cannot

be estimated as low-discrepancy sequences do not have an i.i.d.
property. Randomized quasi-Monte Carlo solves this problem by
applying a randomization on low-discrepancy sequences.

Randomized quasi-Monte Carlo (RQMC) has been used in pric-
ing extensively (see, e.g., Birge, 1995; Boyle et al., 1997). However,
the application of RQMC tomeasure portfolio risk is rarely found in
the literature (see Kreinin et al., 1998; Jin and Zhang, 2006). This
can be explained by the fact that the integrand in riskmanagement
applications is a non-smooth function (e.g., indicator function)
of high-dimensional random inputs. (As pointed out by Mo-
rokoff and Caflisch (1995), the performance of quasi-Monte Carlo
method diminishes when the integrands are not smooth and high-
dimensional.) To compute VaR using QMC, Kreinin et al. (1998)
apply principal component analysis to reduce the dimensionality
of the risk factor space. Jin and Zhang (2006) efficiently simulate
VaR by smoothing the expectation of an indicator function via
Fourier transformation and then applying RQMC.

The motivation of this paper is to investigate whether RQMC
and variance reduction techniques can be combined efficiently for
simulating loss probability and conditional excess under the t-
copulamodel. In order to solve the problemof high-dimensionality
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of the integrands, we apply a linear transformation on the random
input to reduce the effective dimension. Furthermore, we reduce
the area of sampling regions where the simulation integrand is
equal to zero using importance sampling. This also decreases the
impact of the non-smoothness of the simulation integrand. We
finally apply stratification to further improve the accuracy of the
estimates. Numerical experiments illustrate the effectiveness of
RQMC implementations of variance reduction methods over their
Monte Carlo implementations. Although, the methodology of the
paper is explained on market risk management under t-copula
model, it is much more generally applicable to other fields like
credit risk, insurance, and operational risk where t-copula models
are widely used. We also implemented the methods in Google’s
TensorFlow Python package (Abadi et al., 2015) so that we are also
able to give the execution time performance of the methods using
GPU computing.

The rest of the paper is organized as follows. Section 2 describes
the t-copula model for portfolio market risk. Section 3 presents
background on efficient Monte Carlo simulation methods for esti-
mating loss probability and conditional excess. Section 4 combines
the RQMC method with importance sampling and stratified im-
portance sampling for estimating loss probability and conditional
excess. We present numerical results in Section 5.

2. Portfolio market risk in the t-copula model

The essence of any model of portfolio market risk is its ability
to capture dependence among assets. In this section, we describe
the widely used t-copula model (see, e.g., Glasserman et al., 2002;
Sak et al., 2010).

We are interested in the distribution of losses caused by depre-
ciation of stocks over a fixed time period. The following notation is
used in order to represent this distribution.

• D = the number of stocks in portfolio
• wd = the weight of the dth stock
• Xd = the log-return of the dth stock
• L = 1−

∑D
d=1wdeXd =portfolio loss (initial value of portfolio

is assumed to be equal to one).

We assume that we are given a portfolio of stocks with
known weights (w1, . . . , wD)′ and unknown future log-returns
(X1, . . . , XD)′. The main objective is to estimate loss probability
P(L > τ ), and conditional excess E [L|L > τ ], especially at large
values of τ .

To model dependence among stocks, we need to intro-
duce dependence among the log-returns. The log-return vector
(X1, . . . , XD)′ of the stocks is assumed to follow a t-copula with
ν degrees of freedom. The dependence is introduced through a
multivariate t-vector T = (T1, . . . , TD)′ with ν degrees of freedom.
Each log-return is represented as

Xd = cdG−1
d (Fν (Td)) , d = 1, . . . ,D, (1)

in which

• Fν denotes the cumulative distribution function (CDF) of a
t-distribution with ν degrees of freedom;

• Gd denotes the CDF of the marginal distribution of the dth
log-return;

• cd is the scaling factor for the dth log-return.

Through this representation, the dependence among the log-
returns, Xd, can be determined by the correlations among Td. Sup-
pose, we are given the correlation matrix Σ of vector T and let
Λ ∈ RD×D be the lower triangular Cholesky factor of Σ satisfying
ΛΛ′

= Σ. Then, T can be generated using

T =
ΛZ

√
Y/ν

, (2)

where Z = (Z1, . . . , ZD)′ is a standard multi-normal random
vector and Y is an independent chi-squared random variable with
ν degrees of freedom.

3. Efficient Monte Carlo simulation methods

In this section, we provide a brief summary of efficient Monte
Carlo simulation algorithms designed for the estimation of port-
folio market risk. Before that, we start with the implementation
of the naive Monte Carlo algorithm. The naive identity of the loss
probability is P (L > τ) = E

[
1{L>τ }

]
, where 1 {.} denotes the

indicator of the event in braces. We are also interested in the
conditional excess that can be represented as the ratio of two
expectations

E [L|L > τ ] =
E

[
L1{L>τ }

]
P (L > τ)

=
E

[
L1{L>τ }

]
E

[
1{L>τ }

] , (3)

which can be estimated in a single simulation run.
Each replication of the naive Monte Carlo algorithm follows the

steps given below:

1. GenerateD independent standard normal random variables,
Z = (Z1, . . . , ZD)′, and a chi-squared randomvariable Y with
ν degrees of freedom, independent of Z.

2. Calculate T in (2).
3. Calculate the log-returns Xd, d = 1, . . . ,D in (1).
4. Compute the portfolio loss L = 1 −

∑D
d=1wd exp (Xd) and

return the estimators 1{L>τ } and L1{L>τ }.

3.1. Importance sampling

At a large threshold value τ , most of the replications of the
naive simulation algorithm return the value zero for the estimator
1{L>τ }. To increase the number of replications that fall in the region
L > τ , importance sampling modifies the joint density of the
random input.

Suppose f (.) is the joint probability density function (PDF) of
input variables Z and Y , and f̃ (.) is the modified density. Impor-
tance sampling uses the following identity to estimate the loss
probability

E
[
1{L>τ }

]
= Ẽ

[
1{L>τ }

f (Z, Y )

f̃ (Z, Y )

]
,

where Ẽ is the expectation taken using the modified density f̃ (.).
Finding an importance sampling density that minimizes the

variance of Monte Carlo estimators is a subtle problem. But it
is possible to use the zero-variance IS function in search of an
effective IS density (see, e.g., Glasserman et al., 1999 and Arouna,
2004). Glasserman et al. (1999) add the mode of the zero-variance
IS function as a mean shift to the original density for pricing
path-dependent options. Sak et al. (2010) utilize the same idea
to find a close-to-optimal optimal parameters for simulating loss
probabilities in the t-copula model of portfolio market risk.

Sak et al. (2010) add a mean shift vector with negative entries
to the normal vector Z and use a scale parameter less than two for
the chi-square (i.e., Gamma) random variable Y to construct the IS
density. The shift vector and the scale value are selected so that the
mode of the resulting IS density is equal to the mode of the zero-
variance IS function. For more details on the determination of the
IS parameters and implementation of the simulation algorithm, see
Section 4 of Sak et al. (2010).
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