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ABSTRACT

This paper develops an efficient direct integration method for pricing of the variable annuity (VA) with
guarantees in the case of stochastic interest rate. In particular, we focus on pricing VA with Guaranteed
Minimum Withdrawal Benefit (GMWB) that promises to return the entire initial investment through
withdrawals and the remaining account balance at maturity. Under the optimal (dynamic) withdrawal
strategy of a policyholder, GMWB pricing becomes an optimal stochastic control problem that can be
solved using backward recursion Bellman equation. Optimal decision becomes a function of not only the
underlying asset but also interest rate. Presently our method is applied to the Vasicek interest rate model,
but it is applicable to any model when transition density of the underlying asset and interest rate is known
in closed-form or can be evaluated efficiently. Using bond price as a numéraire the required expectations
in the backward recursion are reduced to two-dimensional integrals calculated through a high order
Gauss-Hermite quadrature applied on a two-dimensional cubic spline interpolation. The quadrature
is applied after a rotational transformation to the variables corresponding to the principal axes of the
bivariate transition density, which empirically was observed to be more accurate than the use of Cholesky
transformation. Numerical comparison demonstrates that the new algorithm is significantly faster than
the partial differential equation or Monte Carlo methods. For pricing of GMWB with dynamic withdrawal
strategy, we found that for positive correlation between the underlying asset and interest rate, the GMWB
price under the stochastic interest rate is significantly higher compared to the case of deterministic
interest rate, while for negative correlation the difference is less but still significant. In the case of GMWB
with predefined (static) withdrawal strategy, for negative correlation, the difference in prices between
stochastic and deterministic interest rate cases is not material while for positive correlation the difference
is still significant. The algorithm can be easily adapted to solve similar stochastic control problems with
two stochastic variables possibly affected by control. Application to numerical pricing of Asian, barrier and
other financial derivatives with a single risky asset under stochastic interest rate is also straightforward.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

overview of VA products and the development of their market can
be found in Bauer et al. (2008), Ledlie et al. (2008) and Kalberer and

The world population is getting older fast with life expectancy
raising to above 90 years in some countries. Longevity risk (the
risk of outliving one’s savings) became critical for retirees. Variable
annuity (VA) with living and death benefit guarantees is one of
the products that can help to manage this risk. It takes advantage
of market growth and at the same time provides protection of
the savings. VA guarantees are typically classified as guaranteed
minimum withdrawal benefit (GMWB), guaranteed minimum ac-
cumulation benefit (GMAB), guaranteed minimum income benefit
(GMIB), and guaranteed minimum death benefit (GMDB). A good
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Ravindran (2009). Insurers started to sell these types of products
from the 1990s in United States. Later, these products became
popular in Europe, UK and Japan. The market of VAs is very large,
for example, sales of these contracts in United States between
2011 and 2013 averaged about $160 billion per year according to
the LIMRA (Life Insurance and Market Research Association) fact
sheets.

For clarity and simplicity of presentation, in this paper we
consider a VA contract with a very basic GMWB guarantee that
promises to return the entire initial investment through cash with-
drawals during the policy life plus the remaining account balance
at maturity, regardless of the portfolio performance. Thus even
when the account of the policyholder falls to zero before maturity,
GMWSB feature will continue to provide the guaranteed cashflows.
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GMWSB allows the policyholder to withdraw funds below or at
the contractual rate without penalty and above the contractual
rate with some penalty. If the policyholder behaves passively and
makes withdrawals at the contractual rate defined at the beginning
of the contract, then the behavior of the policyholder is called
static. In this case the paths of the wealth account can be simulated
and a standard Monte Carlo (MC) simulation method can be used
for GMWB pricing. On the other hand if the policyholder optimally
decides the amount to withdraw at each withdrawal date, then the
behavior of the policyholder is called dynamic. Under the optimal
withdrawal strategy, the pricing of variable annuities with GMWB
becomes an optimal stochastic control problem. This problem can-
not be solved by a standard simulation-based method such as the
well known Least-Squares MC method introduced in Longstaff and
Schwartz (2001). This is because the paths of the underlying wealth
process are altered by the optimal cash withdrawals that should
be found from the backward in time solution and the underlying
wealth process cannot be simulated forward in time. However,
it should be possible to apply control randomization methods
extending Least-Square MC to handle optimal stochastic control
problems with controlled Markov processes recently developed in
Kharroubi et al. (2014); though the accuracy and robustness of this
method for GMWSB pricing has not been studied yet.

It is important to note that the fair fee for the VA guarantee
obtained under the assumption that the policyholders behave op-
timally to maximize the value of the guarantee is an important
benchmark because it is a worst case scenario for the contract
writer. That is, under the no-arbitrage assumption, if the guarantee
is perfectly hedged then the issuer will receive a guaranteed profit
if the policyholder deviates from the optimal strategy. Pricing
under any other strategy will lead to smaller fair fee. Of course,
the strategy optimal in this sense may not be optimal to the pol-
icyholder under his circumstances and preferences. On the other
hand, secondary markets for equity linked insurance products
are growing and financial third parties can potentially generate
guaranteed profit through hedging strategies from VA guarantees
which are not priced according to the worst case assumption about
the optimal strategies. There are a number of studies considering
these aspects and we refer the reader to Shevchenko and Luo
(2016) for discussion of this topic and references therein.

Pricing of VA with a GMWB feature assuming constant interest
rate has been considered in many papers over the last decade.
For example, Milevsky and Salisbury (2006) developed a variety
of methods for pricing GMWB products. In their static withdrawal
approach the GMWB product is decomposed into a Quanto Asian
put option plus a generic term-certain annuity. They also consid-
ered pricing when the policyholder can terminate (surrender) the
contract at the optimal time, which leads to an optimal stopping
problem akin to pricing an American put option. Bauer et al. (2008)
presents valuation of variable annuities with multiple guarantees
via a multidimensional discretization approach in which the Black-
Scholes partial differential equation (PDE) is transformed to a
one-dimensional heat equation and a quasi-analytic solution is
obtained through a simple piecewise summation with a linear
interpolation on a mesh. Dai et al. (2008) developed an efficient
finite difference algorithm using the penalty approximation to
solve the singular stochastic control problem for a continuous time
withdrawal model under the optimal withdrawal strategy and
also finite difference algorithm for discrete time withdrawal. Their
results show that the GMWB values from the discrete time model
converge fast to those of the continuous time model. Huang and
Forsyth (2012) did a rigorous convergence study of this penalty
method for GMWB, and Huang and Kwok (2014) deduce various
asymptotes for the free boundaries that separate different with-
drawal regions in the domain of the GMWB pricing model. Chen

and Forsyth (2008) present an impulse stochastic control formu-
lation for pricing variable annuities with GMWB under the opti-
mal policyholder behavior, and develop a numerical scheme for
solving the Hamilton-Jacobi-Bellman variational inequality for the
continuous withdrawal model as well as for pricing the discrete
withdrawal contracts.

More recently, Azimzadeh and Forsyth (2014) prove the exis-
tence of an optimal bang-bang control for a Guaranteed Lifelong
Withdrawal Benefits (GLWB) contract. In particular, they find that
the holder of a GLWB can maximize the contract writer’s losses by
only performing non-withdrawal, withdrawal at exactly the con-
tract rate or full surrender. This dramatically reduces the optimal
strategy space. However, they also demonstrate that the related
GMWSB contract is not convexity preserving, and hence does not
satisfy the bang-bang principle other than in certain degener-
ate cases. GMWB pricing under bang-bang strategy was studied
in Luo and Shevchenko (2015c), and Huang and Kwok (2015)
have developed a regression-based MC method for pricing GLWB.
For GMWB under the optimal withdrawal strategy, the numerical
evaluations have been developed by Dai et al. (2008) and Chen
and Forsyth (2008) using finite difference PDE methods and by Luo
and Shevchenko (2015a) using direct integration method. Pricing
of VAs with both GMWB and death benefit (both under static and
dynamic regimes) has been developed in Luo and Shevchenko
(2015b).

Some withdrawals from the VA type contracts can also at-
tract country specific government additional tax and penalty. Re-
cently, Moenig and Bauer (2015) demonstrated that including
taxes significantly affects the value of withdrawal guarantees in
variable annuities producing results in line with empirical market
prices. These matters are not considered in our paper but can be
handled by the numerical methodology developed here.

In the literature on pricing GWMB, interest rate is typically
assumed to be constant. Few papers considered the case of stochas-
tic interest rate. In particular, Peng et al. (2012) considered
pricing GMWB under the Vasicek stochastic interest rate in the
case of static withdrawal strategy; they derived the lower and
upper bounds for the price because closed-form solution is not
available due to withdrawals from the underlying wealth account
during its stochastic evolution. Bacinello et al. (2011) considered
stochastic interest rate and stochastic volatility models under the
Cox-Ingersoll-Ross (CIR) models. They developed pricing in the
case of static policyholder behavior via the ordinary MC method
and mixed valuation (where the policyholder is semiactive and can
decide to surrender the contract at any time before the maturity)
is performed by the Least-Squares MC. Forsyth and Vetzal (2014)
considered modeling stochasticity in the interest rate and volatility
via the Markov regime switching models and developed pricing
under the static and dynamic withdrawal strategies. Under this
approach, the interest rate and volatility are assumed to have
the finite number of possible values and their evolution in time
is driven by the finite state Markov chain variable representing
possible regimes of the economy.

In this paper, we develop direct integration method for pricing
of VAs with guarantees under the dynamic and static withdrawal
strategies when the interest rate follows the Vasicek stochastic
interest rate model. In the case of general stochastic processes
for the underlying asset and interest rate, numerical pricing can
be accomplished by PDE methods that become slow and difficult
to implement in the case of two and more underlying stochas-
tic variables. Our method is developed for the case when the
bivariate transition density of the underlying asset and interest
rate are known in closed-form or can be evaluated efficiently.
That is, it should be possible to apply this method to the case of,
for example, CIR stochastic interest rate model. Using change of
numeéraire technique with bond price as a numéraire, the required
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