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1. Introduction

The prediction of claim reserves is one of the most important
problems in the insurance mathematics and is the main task of
insurance actuaries. There are a lot of models, methods and algo-
rithms setting claim reserves. A wide range of stochastic methods
is presented in England and Verrall (2002) and Wiithrich and Merz
(2008). Many of them are based on individual loss development
ratios which have been observed so far, see chain ladder (Mack,
1993) and Bornhuetter-Ferguson methods (Bornhuetter and Fer-
guson, 1972), lognormal model (Han and Gau, 2008) and credibility
models (Gisler and Wiithrich, 2008). The main aim is to predict an
appropriate random variable which describes future payments or
estimate parameters of that random variable distribution.

In this paper we deal with Bayesian models which can be
applied to the prediction of claim reserves. We consider the ex-
ponential families with quadratic variance function (EQVF) with
associated conjugate families of priors (for definitions see Sec-
tion 2) and the square loss function. We generalize the family EQVF
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(known in literature) adding one more parameter r. Thanks to this
we obtain model of reserves satisfying conditions about expected
value and variance (see Eqs. (4) and (5)) like in the classical chain
ladder model. But prior distribution provides a mechanism for
incorporating information from previous studies. Loss reserving
analysts can have experience and background knowledge and they
can apply it by a prior distribution. The model can be applied to the
prediction of number of claims (for example applying Poisson or
negative binomial distribution) or amount of reserve (for example
normal or gamma distribution). In this model the Bayesian esti-
mator of the chain ladder factor and predictor of reserves can be
written as credibility formulas. The presented model is connected
with exponential dispersion families but in our model we consider
the prior distribution exactly of chain ladder factor. Thus it has
clear interpretation and its elicitation may be easier. It is some
generalization of Bayesian models presented in Wiithrich and Merz
(2008), Gisler (2006) and England et al. (2012). Bayesian methods
are not new in the problem of prediction of loss reserving. They
are considered in Verrall (1990), de Alba (2002), Ntzoufras and
Dellaportas (2002), Wuthrich (2007), Meyers (2009), Peters et al.
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(2009), Merz and Wiithrich (2010), Sanchez and Vilar (2011), Shi
etal. (2012), Zhang et al. (2012) and Dong and Chan (2013) among
others.

Our aim is not only to present the Bayes estimators and predic-
tors but we also consider the robustness with respect to the priors
and construct optimal procedures. In Bayesian statistical inference
the arbitrariness of a unique prior distribution is a permanent
problem. The uncertainty of the prior information is expressed by
using a class I' of priors. There are several concepts of optimal
rules: I'-minimax rules (e.g. Berger, 1994), conditional I" mini-
max rules (Betro and Ruggeri, 1992; Meczarski, 1993; Boratynska,
2002b), stable and posterior regret I"-minimax rules (Zen and Das-
Gupta, 1993; Boratyriska, 1997, 2002a; Kaminska and Porosiniski,
2009; Kiapour and Nematollahi, 2011). The general references on
robust Bayesian methods are Berger (1994), Rios Insua and Ruggeri
(2000) and Boratyriska (2008b). In insurance models the robust-
ness of Bayesian inference is considered in Gomez-Déniz et al.
(2002, 2006), Gé6mez-Déniz (2008), Chan et al. (2008), Boratyriska
(2008a) and Karimnezhad and Parsian (2014) among others. There
are not many papers dedicated to the problem of reserves predic-
tion where the robustness with respect to priors is considered and
the posterior regret I"-minimax estimators or predictors have not
been presented in insurance reserve models so far.

In this paper we consider two different classes of priors and
the concept of posterior regret I"-minimax estimators of the chain
ladder factors and predictors of reserves. Their values depend only
on the bounds of a set of Bayes actions calculated with respect
to the priors belonging to the class I". Thus computing a poste-
rior regret I"-minimax estimator is simple provided that we have
procedures to compute the range of posterior expectations. The
situation, where there exists a prior in the class I" such that the
posterior regret /"-minimax estimator or predictor becomes Bayes
with respect to this prior, is presented.

2. Exponential family with quadratic variance function

Let a, b, c and r > 0 be fixed real numbers such that the set
OF={eR: a>+bb+c >0}

is non-empty. Let h and g be continuously differentiable real valued
functions satisfying the differential equations
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Let ® be a maximal interval (6p,6;) such that ® C {# €
OT : h(0) > 0}.Let {Py : 6 € @} be a one-parameter exponential
family of probability measures on R with finite two first moments
and with densities of the form

f(x16) = gx)h"(6)e"¥,
with respect to some o -finite measure on R. Then

E(X|#)=r6 and Var(X|0)= r(ad? + b6 + c).
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Hence the expected value is a linear and the variance is a quadratic
function of a parameter # and we will say that a random variable
X has exponential quadratic variance function distribution with
parameters a, b, ¢, r, 6 and denote X ~ EQVF(a, b, c, 1, 0). That
family with r = 1 has been defined by Morris (1982), Chen
et al. (1991) and Eichenauer-Hermann (1991). We made some
generalization by adding r > 0. Poisson, Gamma, negative bino-
mial distributions are examples of distributions belonging to that
exponential family of distributions. For more details see Table 1 at

Table 1
Examples of EQVF families.
Distribution a,b,c o, X
Normal 2
=bh= = —0.5002+ 6
N(ro,r),0 e R a=b=0c=1 e
Poisson P(r0) a=c=0b=1 gBe—at
6>0
Negative binomial i 1
=b=1c=0 A (1= 5 )
bin~(r, 7.6 > 0 a ¢ (7)1 = 757)
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the end of the paper. For detailed characteristics of the family and
proofs of properties see Morris (1982) and Chen et al. (1991).

Let IT(«, B) be a probability measure on the interval ® with the
Lebesgue density

T p(0) o R%(0)eP1) 9 € O,

where «, B are real parameters satisfying

a>3a and B > (o —2a)—b and

B < 60i(x—2a)—b

(see Chenetal., 1991). Then IT(«, B) is a conjugate prior and given
a random sample x = (x1, X2, ..., X,) from a distribution P, the
posterior distribution is equal to IT(«a+nr, ﬂ—i—Z?ﬂxi) (parameters
of the posterior distribution satisfy conditions (3), the proof is

similar to Chen et al., 1991) and the Bayes estimator of 6 under
the square error loss is given by the formula

éB(X)= ﬂ—i—b—i—Z?:]x,-.
m= o —2a+nr

(3)

The posterior risk of the estimator is

R85 — (B+b+Y" %) a+b(B+b+ X", x)(@+nr —2a)
(1T, 0) = (o + nr — 2a(« + nr — 3a)
C
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where the posterior risk of an estimator 6 under the prior IT
and the value x of an observed random variable X is equal to the
expected value of square error if 6 has the posterior distribution,
hence Ry(I1, 0) = E((8 — 6)?|x).

3. Posterior regret I"-minimax estimation and prediction

Now suppose that the prior distribution is not exactly specified
and considered the class I" of priors. We are interested in calculat-
ing the posterior regret I"-minimax (PRGM) decision rule (in our
problem estimator or predictor) i.e. the decision rule d‘,’ﬁ satisfying
for every value x of an observed random variable X

sup rx(IT, d%(x)) = inf sup ry(I7, a),
fHer a€R r1er

where (11, a) is a posterior regret equal to
(I, a) = Ry(I1, a) — Ry(IT, d%(x)),

Ry(I1, a) is a posterior risk of an action (value of an estimator or
predictor when the observed random variable X is equal to x) a,
and d&, is the Bayes rule. The posterior regret measures the loss of
optimality due to choosing a instead of the optimal Bayes action.
Given the imprecision in elicitation of a prior, we try to make
a decision, and this decision cannot be a Bayes action for every
prior in the class I". Thus we choose an action (in our problem
an estimate or a predictor) which minimizes the maximum loss
of optimality in the class I', and the largest possible increase in
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