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a b s t r a c t

We revisit the gamma–gamma Bayesian chain-ladder (BCL) model for claims reserving in non-life
insurance. This claims reserving model is usually used in an empirical Bayesian way using plug-in
estimates for the variance parameters. The advantage of this empirical Bayesian framework is that allows
us for closed form solutions. The main purpose of this paper is to develop the full Bayesian case also
considering prior distributions for the variance parameters and to study the resulting sensitivities.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The chain-ladder (CL) algorithm is probably to most popular
method to set the reserves for non-life insurance claims. Orig-
inally, the CL method was introduced in a purely algorithmic
fashion and itwas not based on a stochasticmodel. Stochasticmod-
els underpinning the CL algorithm with a statistical model were
only developedmuch later. The twomost commonly used stochas-
tic representations are Mack’s (1993) distribution-free CL model
and the over-dispersed Poisson (ODP) model of Renshaw and Ver-
rall (1998) and England and Verrall (2002). In this paper we study
the gamma–gammaBayesian chain-ladder (BCL)modelwhich pro-
vides in its non-informative prior limit another stochastic repre-
sentation for the CL method. This model was first considered in a
claims reserving context by Gisler (2006) and Gisler andWüthrich
(2008). The typical application of the gamma–gamma BCL model
was done under fixed (given) variance parameters, using plug-
in estimates for these variance parameters, see Example 2.13 in
Wüthrich and Merz (2015) for such an empirical Bayesian analy-
sis. Of course, this (partially) contradicts the Bayesian paradigm.
In a full Bayesian approach one should also model these variance
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parameters with prior distributions. The aim of this paper is to
study the influence of such a full Bayesian modeling approach and
compare it to the empirical Bayesian modeling approach used in
Wüthrich and Merz (2015). In particular, we aim at analyzing the
sensitivity of the prediction uncertainty in the choice of these vari-
ance parameters. This is crucial in solvency considerations and it
improves the crude estimates usually used in practice.

We remark that Bayesian models have become very popular in
claims reserving, recently. This popularity is partly explained by
the fact that Bayesian models can be solved very efficiently with
Markov chain Monte Carlo (MCMC) simulation methods. In this
paper we aim at finding a class of Bayesian models that provides
an analytical closed form solution for the posterior quantities of
interest. This has the advantage of getting a deeper mathematical
insight and of accelerating the calculations. For an overview on
Bayesian methods in claims reserving and corresponding MCMC
applications we refer to the literature from this growing area.
Organization.

In the next sectionwe introduce the gamma–gammaBCLmodel
and we show that we recover the classical CL reserves in its non-
informative prior limit. In Section 3 we provide the prediction
uncertainty formulas in the long-term view and the short-term
view, respectively. In Section 4 we give several real data examples
and analyze the resulting sensitivities in the choice of the prior
distributions. All proofs are provided in Appendix A.
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2. Gamma–gamma Bayesian chain-ladder model

We introduce the gamma–gamma BCL model in this section. In
contrast to Model Assumptions 2.6 in Wüthrich and Merz (2015)
we also model the variance parameters in a Bayesian way. We
then derive the claims predictors in the non-informative prior limit
which turn out to be identical to the classical CL predictors, as seen
in Theorem 2.2.

We denote accident years by 1 ≤ i ≤ I and development years
by 0 ≤ j ≤ J . Throughout, we assume I > J . The cumulative
claim of accident year i after development year j is denoted by
Ci,j, and Ci,J denotes the ultimate claim of accident year i. For more
background information on the claims reserving problem and the
corresponding notation we refer to Chapter 1 in Wüthrich and
Merz (2015). We make the following model assumptions.

Model Assumptions 2.1 (Gamma–Gamma BCL Model).

(a) Conditionally given parameter vectors 2 =

Θ0, . . . , ΘJ−1


and σ =


σ0, . . . , σJ−1


, the cumulative claims (Ci,j)0≤j≤J

are independent (in accident year i), and Markov processes (in
development year j) with conditional distributions

Ci,j+1

{Ci,j,2,σ}

∼ Γ

Ci,jσ

−2
j , Θjσ

−2
j


,

for all 1 ≤ i ≤ I and 0 ≤ j ≤ J − 1.
(b) The parameter vectors 2 and σ are independent.
(c) The components Θj of 2 are independent and Γ (γj, fj(γj − 1))-

distributed with prior parameters fj > 0 and γj > 1 for 0 ≤ j ≤

J − 1.
(d) The components σj of σ are independent and πj-distributed

having support in (0, dj) for given constants 0 < dj < ∞ for
all 0 ≤ j ≤ J − 1.

(e) (2, σ) and C1,0, . . . , CI,0 are independent and Ci,0 > 0, P-a.s.,
for all 1 ≤ i ≤ I .

These model assumptions imply that we have the following CL
properties

E

Ci,j+1

 Ci,0, . . . , Ci,j, 2, σ


= Θ−1
j Ci,j, (2.1)

Var

Ci,j+1

 Ci,0, . . . , Ci,j, 2, σ


= Θ−2
j σ 2

j Ci,j. (2.2)

Thus, for given parameter vectors 2 and σ we obtain a
distributional example ofMack’s (1993) distribution-free CLmodel
with CL factors Θ−1

j and variance parameters Θ−2
j σ 2

j . Moreover,
for πj(·) being single point masses for all 0 ≤ j ≤ J − 1
we exactly obtain Model Assumptions 2.6 of Wüthrich and Merz
(2015) assuming given (known) variance parameters σ 2

j .
The main task in claims reserving is to predict the ultimate

claims Ci,J , given observations

Dt = {Ci,j : i + j ≤ t, 1 ≤ i ≤ I, 0 ≤ j ≤ J}, at time t ≥ I .

In complete analogy to the derivations in Section 2.2.1 ofWüthrich
and Merz (2015), the application of Bayes’ rule provides posterior
π for the parameters (2, σ), conditionally given observations Dt ,
for t ≥ I ,

π (θ, σ| Dt) ∝

J−1
j=0

θ

γj+
(t−j−1)∧I

i=1

Ci,j
σ2
j

−1

j

× exp


−θj


fj(γj − 1) +

(t−j−1)∧I
i=1

Ci,j+1

σ 2
j



×

(t−j−1)∧I
i=1


Ci,j+1

σ 2
j

 Ci,j
σ2
j

Γ


Ci,j
σ 2
j

 πj(σj)

 . (2.3)

From this we see that the posteriors of (Θj, σj) are independent for
different development periods 0 ≤ j ≤ J − 1. A non-informative
prior limit for Θj corresponds here to letting γj → 1 (and the
terms fj(γj−1)will vanish in (2.3)). Therefore, we refer as the non-
informative prior limit when the (component-wise) limits γ → 1
are taken, where we set γ = (γ0, . . . , γJ−1) and 1 = (1, . . . , 1).
Wehave the following theorem for the claimsprediction under this
non-informative prior limit (the proof is given in the Appendix).

Theorem 2.2 (CL Predictor). Under Model Assumptions 2.1 and for
t ≥ I ≥ i > t − n ≥ t − J , the Bayesian predictor for Ci,n in its
non-informative prior limit is given by

lim
γ→1

E

Ci,n
Dt


= Ci,t−i

n−1
j=t−i

f CL(t)j
def.
= CCL(t)

i,n ,

with CL factorsf CL(t)j defined by

f CL(t)j =

(t−j−1)∧I
ℓ=1

Cℓ,j+1

(t−j−1)∧I
ℓ=1

Cℓ,j

.

Theorem 2.2 states that in the non-informative prior limit γ → 1
we exactly obtain the classical CL predictor, seeMack (1993). Thus,
we have found another stochastic representation that underpins
the CL algorithm with a statistical model. Therefore, we (may)
use this model in its non-informative prior limit to analyze the
prediction uncertainty of the CL algorithm. In contrast to Remark
2.11 of Wüthrich and Merz (2015) we now obtain this result in
the full Bayesian framework, also considering prior distributions
for the standard deviation parameters σ.

3. Prediction uncertainty formulas

3.1. Long-term prediction uncertainty formula

Themain purpose of this paper is to analyze the influence of the
standard deviation parameters σ on the ultimate claim prediction
uncertainty, where in contrast to Chapter 2 of Wüthrich and Merz
(2015), these standard deviation parameters σ are also modeled
with prior distributions. We analyze the prediction uncertainty
at time t ≥ I in terms of the conditional mean square error of
prediction (MSEP) given by

msepCi,J |Dt


E

Ci,J
Dt


= E


Ci,J − E


Ci,J
Dt

2Dt


= Var


Ci,J
Dt


= Var


E

Ci,J
Dt , σ

Dt


+ E

Var


Ci,J
Dt , σ

Dt

. (3.1)

We aim at calculating this conditionalMSEP in the gamma–gamma
BCL model which provides, in its non-informative prior limit γ →

1, an uncertainty estimate for the CL algorithm, that is, we aim at
calculating the limit

msepCi,J |Dt

CCL(t)
i,J


def.
= lim

γ→1
msepCi,J |Dt


E

Ci,J
Dt


.
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