Insurance: Mathematics and Economics 73 (2017) 82-93

journal homepage: www.elsevier.com/locate/ime

Contents lists available at ScienceDirect

ISR

Insurance: Mathematics and Economics

Optimal dividend payout model with risk sensitive preferences

Nicole Bduerle **, Anna Jaskiewicz b

2 Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany

@ CrossMark

b Faculty of Pure and Applied Mathematics, Wroctaw University of Science and Technology, Wroctaw, Poland

ARTICLE INFO ABSTRACT

Article history:

Received May 2016

Received in revised form
January 2017

Accepted 20 January 2017
Available online 31 January 2017

Keywords:

Dividend payout problem

Risk sensitive preferences
Bellman equation

Band policy

Policy improvement algorithm

We consider a discrete-time dividend payout problem with risk sensitive shareholders. It is assumed that
they are equipped with a risk aversion coefficient and construct their discounted payoff with the help
of the exponential premium principle. This leads to a risk adjusted discounted cash flow of dividends.
Within such a framework not only the expected value of the dividends is taken into account but also their
variability. Our approach is motivated by a remark in Gerber and Shiu (2004). We deal with the finite and
infinite time horizon problems and prove that, even in this general setting, the optimal dividend policy is a
band policy. We also show that the policy improvement algorithm can be used to obtain the optimal policy
and the corresponding value function. Next, an explicit example is provided, in which the optimal policy
is shown to be of a barrier type. Finally, we present some numerical studies and discuss the influence of
the risk sensitive parameter on the optimal dividend policy.
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1. Introduction

The dividend payout model in risk theory is a classical problem
that was introduced by de Finetti (1957). Since then there have
been various extensions. The goal is to find for the free surplus
process of an insurance company, a dividend payout strategy that
maximises the expected discounted dividends until ruin. Typical
models for the surplus process are compound Poisson processes,
diffusion processes, general renewal processes or discrete time
processes. The reader is referred to Albrecher and Thonhauser
(2009) and Avanzi (2009), where excellent overviews of recent
results are provided.

Up to now most of the research has been done for the risk
neutral perspective, where the expected discounted dividends
until ruin are considered. Obviously this criterion does not take the
variability of the dividends into account. From the shareholders’
perspective or from an economic point of view it would be
certainly desirable to reduce the variability of the dividends. Risk
should be incorporated in any kind of economic decision and
shareholders are in general risk averse. In Gerber and Shiu (2004)
the authors propose the problem of maximising the expected
utility of discounted dividends until ruin instead. Such a criterion
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is able to model risk aversion. In Grandits et al. (2007) the authors
consider the dividend problem with an exponential utility in a
diffusion setting. They show under some assumptions that there is
a time dependent optimal barrier. Biuerle and Jaskiewicz (2015)
consider a discrete time setting and prove the optimality of a
band policy for the exponential utility and partly characterise the
optimal dividend policy in a power utility setting. To the best of
our knowledge these are so far the only papers dealing with risk
sensitive dividend problems.

In this paper, we treat now the discrete time setting with state
space R, like in Albrecher et al. (2011) and Socha (2015). However,
we propose a new approach, where we consider risk sensitive
preferences. Namely, the risk adjusted discounted cash flow of the
shareholder is now of the form

Vi =ar +M(Viyq), where M(Viq) = _f ln(Ete’VVf“>,
Y

«a; is the dividend paid at time ¢, 8 € (0, 1) is a discount factor,
y > 0 is the risk sensitive parameter and V; is the risk adjusted
discounted cash flow of dividends from time ¢ onwards. These
preferences are not time additive in the future dividends anymore
and allow to model risk aversion. Note that we are here concerned
about the variability of each dividend paid. This is in contrast to
Grandits et al. (2007) and Bduerle and Jaskiewicz (2015), where
the utility of the total discounted dividends is considered. For the
exponential utility with discount factor 1 both approaches are
equivalent.
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The risk sensitive preferences considered in this paper belong
to a wider class of recursive preferences studied extensively in
macroeconomics and finance. They enjoy attention, because they
allow to disentangle risk attitudes from intertemporal substitution.
In particular, Epstein and Zin (1989) and Weil (1990) motivated
the use of the certainty equivalent M. Its concavity (see footnote
in Section 2) would amplify risk aversion above intertemporal
substitution. Furthermore, the concavity of M would cause the
agent to prefer the early resolution of uncertainty (see Kreps
and Porteus, 1978). The aforementioned recursive preference
functional is still analytically tractable and retains the main
behaviour features of the risk neutral case with M replaced by the
expectation operator. One of the first papers on optimal control
with this risk adjusted certainty equivalent in discrete time is
Hansen and Sargent (1995). It considers special LQ-problems. In
recent years there is a growing number of papers that study
various model aspects with certainty equivalents, see for instance,
Anderson (2005), Tallarini (2000) and Weil (1993).

Our model can be viewed as a Markov decision process with
specific transition probability and payoff functions. Therefore,
it is worth mentioning that Markov decision processes with
dynamic risk maps and discounted costs were examined by
Ruszczynski (2010). However, his results do not imply ours,
since he studied bounded cost functions and coherent risk
measures. In particular, such a risk measure must be positively
homogeneous. Further, Shen et al. (2013) generalise the paper
of Ruszczynski (2010) to unbounded gains and the risk sensitive
average reward case. However, in their approach they apply
the weighted norm approach, which results in rather stringent
assumptions. Moreover, they do not analyse the properties of
an optimal policy. This analysis, in our case, is necessary to
show that the optimal policy has a band structure. Bduerle and
Rieder (2014) considered general certainty equivalents for the
accumulated discounted payoffs. All the aforementioned papers
deal with Bellman equations and discuss existence and uniqueness
of solutions as well as optimal policies. However, their results are
not helpful in our special setting.

The main contributions of our paper are threefold. First we are
able to give a mathematically rigorous solution technique for these
risk sensitive dividend problems over a finite and an infinite time
horizon. More precisely, we formulate a Bellman equation which
allows to compute the value function over a finite time horizon. We
also show that these value functions monotonically approximate
the value function of the infinite horizon problem. The infinite
horizon value function is also characterised as a fixed point of
an operator on a certain set of functions. Second we prove that
a stationary optimal policy has a band structure. Hence, even in
this more complicated risk sensitive setting, we are able to confirm
the same form of optimal dividend payout strategy as in the risk
neutral case (for the risk neutral model consult, e.g., Miyasawa,
1962; Morrill, 1966; Gerber, 1974; Borch, 1982). Third we show
that the policy improvement algorithm is another feasible way
to compute the value function and the optimal dividend payout
policy for the infinite time horizon. Finally, we give some numerical
examples that shed some light on the optimal policy. For a risk
sensitive model with left-sided exponential distribution for the
increments of the risk reserve, we show under some assumptions
on the parameters that a barrier policy is optimal. This result
generalises Socha (2015). For a risk sensitive model with the
double-exponential distribution for the increments of the risk
reserve, we compute the optimal policy for a three-stage model
explicitly. We can see some surprising dependence of the barrier
on the risk sensitive parameter.

The paper is organised as follows. In Section 2, we introduce
the model and our notation. The finite horizon problem is then
considered in Section 3 and the limit to the infinite horizon is

discussed in Section 4. In Section 5, we characterise the value
function as the unique fixed point of some operator within
a certain class of functions. Next we show in Section 6 that
an optimal dividend policy in this risk sensitive setting is a
band policy. Afterwards we prove the validity of the policy
improvement algorithm in this risk sensitive case. In Section 8
we consider an example with left-sided exponential distribution
for the increments of the risk reserve and show that a barrier
policy is optimal. In Section 9, we provide two examples, where
we compute the optimal risk sensitive dividend payout over a time
horizon of three and discuss the influence of the risk sensitive
parameter on an optimal policy.

2. The model

We consider the classical dividend payout problem with risk
sensitive recursive evaluation of the dividends, which are paid at
discrete times, say n € N := 1, 2, .... Assume there is an initial
surplus x; and usually x; = x € Ry := [0, 400). Let Z, be
the difference between premium income and claim size in the
nth time interval and assume that Z, Z,, . . . are independent and
identically distributed random variables with distribution v on R.
At the beginning of each time interval the insurer can decide upon
paying a dividend. The dividend payment at time n is denoted by
ay. If the current risk reserve at time n € N, say x,, is non-negative,
then a, has to be non-negative and less than or equal to x,. If
X, < 0, then the company is ruined and no further dividend can
be paid. Hence, the set of admissible dividends is A(x,) := [0, x,],
ifx, > 0and A(x,) := {0}, if x, < 0. The evolution of the surplus
is given by the following equation x, 1 := f (X,, an, Z,), where

Xn— Qn +Z,, ifx, >0
Xn, ifx, <0.

f G, an, Zy) = {

For any n € N, by H, we denote the set of all feasible histories of
the process up to time n, i.e.,

b X1, ifn=1
T (X, a0, %0, .00, X)), ifn> 2,

where a, € A(x) for k € N. A dividend policy 1 = (7p)nen iS
a sequence of Borel measurable decision rules 7, : H, — R,
such that 7, (h,) € A(x,). Let A be the set of all real-valued Borel
measurable mappings such that «(x) € A(x) for everyx € R. A
policy m = (7y)nen is called Markov, if 7, (h,) = o, (x,) for some
on € A, every h, € H, and n € N. A Markov policy is stationary,
if e, = o for some @ € A and all n € N. In this case, we write
m = a®. The sets of all policies, all Markov policies, all stationary
policies are denoted by I7, ITM and IT°, respectively.

Ruin occurs as soon as the surplus gets negative. The epoch
t of ruin is defined as the smallest positive integer n such that
xn, < 0. The question arises as to how the risk sensitive insurance
company will choose its dividend strategy to maximise the gain of
the shareholder. In this paper, we shall consider the risk adjusted
discounted cash flow of dividends in the finite and infinite time
horizon, derived with the aid of the entropic risk measure also
known as the exponential premium principle.

Let X be a non-negative real-valued random variable with
distribution © defined on some probability space (£2, ¥, P). The
entropic risk measure p for X is defined as follows

p(X) = —% ln(/]R e‘”u(dX)>,

+

where y > 0 is a risk sensitivity parameter known also as a risk
coefficient. Let Y be also a non-negative random variable defined
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