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a b s t r a c t

The purpose of history matching is to find one or several reservoir models which can reproduce as best

as possible all the available data. The available data are traditionally some production data, but today

seismic data are often integrated in the history matching process. The way of measuring the misfit

between real data and simulated responses has a significant impact on the optimization process and

hence on the final optimal model obtained. The classical formulation of the misfit is the least square

one, which was used with success for production data. This formulation was naturally extended for

seismic data. However, it yields an objective function term which is difficult to reduce. Indeed, seismic

data are different from production data since they are defined by millions of points and are generally

very noisy. When matching seismic data, the goal is then to capture the main features. As a result,

computing a point to point error is not adapted and the resulting objective function is not

representative of the quality expected for the match. We propose in this paper to define a more

appropriate formulation. The idea is to use some image analysis tools to define a formulation focusing

on the main features of seismic images. More precisely, it is based on image segmentation and on a

modified Hausdorff metric. We illustrate the success of this formulation on a simple history

matching case.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

History matching is an important task in reservoir engineering.
It aims at building reliable reservoir models. A reservoir model is
said to be reliable when it reproduces all the available data as
well as possible. These data fall into two types: static data, which
are invariable in time, and dynamic data, which evolve in time
according to fluid movements in the reservoir. Traditionally,
dynamic data consist of production data collected at wells.
Nowadays, seismic data repeated in time can also be acquired.
Stratigraphic joint inversion of such seismic data can provide
seismic attributes such as waves velocity and P impedances
(Delepine et al., 2010). These data constitute a highly informative
spatial information. Moreover, the variations of these attributes
in time characterize the fluid and pressure variation in the reservoir.
It is of invaluable interest to include this information in the matched
model (Hall, 2006; Dadashpour et al., 2008, 2009). Indeed, it provides
insights about the fluid behavior over extensive areas of the reservoir
and can help identify connected regions.

The workflow used to build a reservoir model is a chain of
successive modeling steps. First, a geological model is built and
populated with petrophysical properties such as porosity and
permeability. Then, this model is upscaled to a reservoir grid used
to perform a fluid flow simulation. Simulated production data
consist of the responses at the wells over time computed by this
simulation. Seismic attribute variations (velocity and acoustic
impedances) can be derived from the computed pressure and
saturation variations through a petro-elastic modeling. Typically,
it involves Gassmann equations (Gassmann, 1951) to model fluid
effects and Hertz-Mindlin equations (Mindlin, 1949) to model
pressure effects. Outputs of the petro-elastic model are then
usually filtered for consistency with the typical seismic band-
width. The resulting seismic attribute variations are called the
simulated seismic attributes. In this paper, the comparison with
real data is performed between seismic attributes instead of
seismic data in order to avoid the seismic forward modeling
which is a difficult and costly step (Gosselin et al., 2003).

The matching of the reservoir model with the available data is
performed by an iterative process. The different unknown para-
meters of the model are modified in order to reduce a functional,
called the objective function, which measures the misfit between
real data and simulated data. The most classical formulation for
the objective function is based on least squares. It proved to be
efficient for production data (Oliver and Chen, 2010), in the sense
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that it is a good characterization of the error between simulated
and real data. In addition, it can be significantly reduced during
the history matching process. To integrate seismic data in the
reservoir model, a seismic related term should be included in the
objective function. This term is the measure of the misfit between
the simulated seismic responses and the reference seismic attri-
butes. In previous work, the least square formulation was natu-
rally extended for the evaluation of this misfit. The objective
function defined with the least square formulation, denoted by
OFLS, is given by

OFLS ¼
1

2
ðd� ~dÞT C�1

ðd� ~dÞ

where d is the reference data vector, ~d is the simulated data vector
and C is the covariance matrix, which represents the measurement
uncertainties (Tarantola, 1987). When the number of seismic data is
large, the full covariance matrix is hard to invert. In addition, off
diagonals terms are difficult to estimate. Usually, these terms are
neglected and the covariance matrix is taken as diagonal.

Different studies show that the minimization of the seismic term
is very difficult (Gosselin et al., 2003; Roggero et al., 2007). This is
related to the nature of seismic data, which are very different from
production data. First, seismic attributes are defined by seismic
cubes with millions of pixels, while production data are some
curves, given by tens of points. Using a least square formulation
for seismic attributes misfit means that the objective function is the
sum of pixel by pixel errors. Second, the simulated seismic attributes
are derived from a reservoir simulation followed by a petro-elastic
modeling step. Due to CPU time issues, reservoir simulation often
requires a drastic upscaling, in particular for the horizontal direction.
Thus the resolution of the simulated seismic attributes can be very
low in comparison to the resolution of the reference ones. This
implies that the meaning of the history matching seismic misfit is
very different from the meaning of the misfit built for seismic
inversion. Third, the seismic attributes to be matched, such as
acoustic P impedances for example, are derived from a preliminary
inversion process of the seismic data which are generally noisy. In
addition, the result of the inversion process is largely dependent on
the choice of the prior model, and thus is uncertain. Considering
these three points, trying to match precisely each pixel value, as in
the least square formulation, seems to be non realistic. Moreover,
since the number of parameters for optimization is restricted, we
argue that the aim of the history matching of seismic attributes is
not to retrieve precisely each pixel value, but rather to capture the
main features. As underlined before, the valuable information given
by seismic data is a spatial information, like presence of channels or
steam chamber growth. Considering this purpose for the history
matching of seismic data, it is clear that a formulation which
considers each pixel error is not adapted.

This issue was already studied. Gosselin et al. (2003) put in
evidence that the traditional diagonal least square formulation was
not adapted to seismic data. As already mentioned, correlations
between data are neglected for sake of simplicity. When data are the
different pixels of a seismic image, this assumption is clearly not
valid. The authors propose a correlation function based on an
exponential formulation which enables a simple and efficient
inversion of the correlation matrix. This approach clearly is an
improvement, but it still uses a least square formulation and hence,
a point to point misfit computation. On real cases, the convergence
of the optimization process remains very difficult, despite the
improvement of the formulation. An interesting work was devel-
oped by Wu et al. (2004). After noticing that a point to point error is
not appropriate to characterize the intuitive similarity that can be
observed between two images, the authors propose to use a cross
correlation tool. To improve the cross correlation, which can be very
low even if two images are visually correlated, they preliminarily

perform a statistical analysis of the data (canonical analysis or
principal component analysis). They obtain statistical attributes on
which they compute the cross correlation. The main advantage of
this approach is that PCA makes it possible to compute the
correlation between two different types of data (between a satura-
tion map and a seismic map for example). In the history matching
process considered here, the misfit is computed between the same
type of data. Thus, the PCA is equivalent to a moving average filter.
More recently, Jin et al. (2011) proposed to convert seismic images
into binary images and then consider a pixel to pixel error between
these binary images.

Hence, the aim of this work is to reconsider the seismic term in
the objective function and to develop a more appropriate for-
mulation. In the first section, we detail the successive steps
leading to the new formulation and illustrate them on two
examples of seismic images. Then, the proposed formulation is
integrated into a history-matching process. We investigate the
potential improvement over the least square approach on a
synthetic application case.

2. Definition of the appropriate formulation

In what follows, since seismic data provide an image of the
reservoir, terms ‘‘map’’ and ‘‘image’’ will often be used to
designate seismic data.

We first illustrate with a simple example that the least square
formulation is not appropriate for measuring the misfit of seismic
attributes (Fig. 1). To do this, we compute the objective function
between a reference seismic attribute map and two simulated
maps. The seismic attribute considered here is the variation of P
impedances. The reference data are extracted from a steam
assisted gravity drainage field case. The reference image, denoted
by A, shows the growth of the steam chamber (the increase of gas
saturation results in P impedance decrease). The first simulated
map, B, is the one obtained with the initial model developed for
this case (before history matching). The second simulated map,
named C, is the result of the same simulation but without
injection of steam in the field. The displayed variations are just
due to noise. Visually, the first simulated image is much closer to
the reference: the steam chamber is reproduced by simulation,
even if it has not the same size and shape as the reference one.
Note that this simulated image does not have the same resolution
as the reference one, due to the upscaling performed for the fluid-
flow simulation. Indeed, the seismic grid consists of a regular grid
of 50�49 grid cells of size 2 m�1 m, while the upscaled
reservoir grid only consists of 28�42 grid cells with maximum
size 2 m�1 m near the well. Away from the well and approaching
the top of the reservoir, the vertical and horizontal resolutions get
coarser. On the second image, there is no steam chamber, and
yet, the least square formulation of the objective function gives
a smaller value (OFLS(A,C)¼115.79) than for the first one
(OFLS(A,B)¼266.20). From a history matching perspective, this
means that the second image is considered as a better one with
respect to the reference. In such a case, we cannot expect the
history matching process to be successful. Since a seismic map
contains a lot of information, the basic idea of our formulation is
as a first step to extract the most relevant information and focus
on it. Then, the following step is to find an appropriate metric to
measure the error between the relevant information derived from
real seismic attributes and the one derived from the numerical
outputs. The alternative formulation proposed in this paper
consists of the three following steps:

1. simplify images to extract the relevant information by filtering
and clustering,
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