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a b s t r a c t

Basis risk occurs naturally in a number of financial and insurance risk management problems. A notable
example is in the context of hedging a derivative where the underlying security is either non-tradable
or not sufficiently liquid. Other examples include hedging longevity risk using index-based longevity
instrument and hedging crop yields using weather derivatives. These applications give rise to basis
risk and it is imperative that such a risk needs to be taken into consideration for the adopted hedging
strategy. In this paper, we consider the problem of hedging a European option using another correlated
and liquidly traded asset and we investigate an optimal construction of hedging portfolio involving such
an asset. The mean–variance criterion is adopted to evaluate the hedging performance, and a subgame
Nash equilibrium is used to define the optimal solution. The problem is solved by resorting to a dynamic
programming procedure and a change-of-measure technique. A closed-form optimal control process is
obtained under a diffusion model setup. The solution we obtain is highly tractable and to the best of our
knowledge, this is the first time the analytical solution exists for dynamic hedging of general European
options with basis risk under the mean–variance criterion. Examples on hedging European call options
are presented to foster the feasibility and importance of our optimal hedging strategy in the presence of
basis risk.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known in the financial theory that when an option is
written on an asset that is tradable, it can be hedged by trading in
the underlying asset.What if an option iswritten on an asset that is
either illiquid or even non-tradable? In this case, a common hedg-
ing practice is to use another asset that is tradable, highly liquid,
and also has the desirable property of being highly correlated to
the underlying asset of the option. Because the hedged asset does
not perfectly capture the behavior of the underlying asset, there is
a mismatch between the risk exposure of the hedged portfolio and
the option in question; this gives rise to the so-called basis risk. As
shown in Davis (2006), the basis risk could be huge even though
both assets have very high correlation. This implies that the basis
risk can have a detrimental effect on the hedging performance and
hence it needs to be prudently managed.

Basis risk does not just confine to hedging financial derivatives,
it exists inmany other settings, notablywhen an index-based secu-
rity is used for hedging. For example, a pension plan sponsor may
choose to hedge the plan’s longevity risk by resorting to standard
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longevity instrument that is traded in the capital market. While
such ‘‘standard’’ instrument provides liquidity and transparency,
its payoffs are typically determined by mortality indices based on
one or more populations. As the longevity experience of the pen-
sion plan can deviate significantly from the reference populations,
the basis risk, or more specifically, the population basis risk, is said
to occur; see also Li and Hardy (2011) and Coughlan et al. (2011).
Another example is in the context of managing agricultural risk.
In this application, using weather derivatives for hedging agricul-
tural risk could give rise to variable basis risk and spatial basis risk
(e.g., Brockett et al., 2005;Woodard and Garcia, 2008). Another sit-
uation forwhich basis risk arises is when a farmer purchases a crop
insurance that is based on area yield, instead of individual yield.
The area-yield crop insurance, which is known as the Group Risk
Plan in the US, is an insurance scheme with indemnity depending
on the aggregated county yields. The individual-yield crop insur-
ance, which is known as the Annual Production History Insurance
in the US, is another insurance scheme with payoff that is linked
to individual farm yields. The discrepancy between yields at the
county level and at the individual level gives rise to the basis risk;
see for example Skees et al. (1997) and Turvey and Islam (1995).

A typical example in the financial market is that the hedging for
an option written on a non-tradable asset is often conducted via
trading over one liquidly traded asset which is closely correlated
with the non-tradable underlying asset. However, one should
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be very careful to use such a strategy since ‘‘close correlation’’
between the two underlying assets cannot guarantee the hedging
performance to be as good as one may desire. Indeed, Davis (2006)
showed that the unhedgeable noise, which is attributed to the
mismatch between the two assets, may be huge even though the
two underlying assets have very high correlation, and the ‘‘naive’’
hedging strategy may be ineffective.

In the existing literature, analytical results on optimal hedg-
ing in the presence of basis risk can broadly be classified into two
streams. In order to ensure themodel’s tractability, the first stream
of investigation considers hedging general derivatives with basis
risk under an exponential utility maximization framework. The pi-
oneering closed-form optimal hedging strategieswere obtained by
Davis (2006).1 The basic model of Davis (2006) was subsequently
extended by Monoyios (2004) and Musiela and Zariphopoulou
(2004) in a few interesting directions including indifference pric-
ing, perturbation expansions, etc. All of these generalizations are
restricted to an exponential preference optimization framework. If
we were to consider other optimization hedging frameworks such
as under a mean–variance criterion, analytical optimal strategies
with basis risk have been obtained but only for hedging futures.
We classify this line of inquiry as the second stream. The main
contribution is attributed to Duffie and Richardson (1991) who
obtained the optimal continuous-time futures hedging policy un-
der geometric Brownian motion assumptions. They demonstrated
that the optimal hedging strategy can be derived from the nor-
mal equations for orthogonal projection in a Hilbert space. Their
method, however, is not readily applicable tomore general deriva-
tives other than the futures contract. This is because their proposed
method depends highly on the specific formulation of the problem
and the trivial structure of the payoff function of the futures con-
tract.

Motivated by the above two streams of investigation, this paper
attempts to address each of their limitations by studying the
dynamic hedging of general European optionswith basis risk under
a mean–variance criterion. Since the seminal work of Markowitz
(1952), the mean–variance criterion has been widely applied in
finance. A key advantage of the mean–variance criterion over an
utility maximization objective is that in practice it is typically
challenging to accurately evaluate a hedger’s utility function
while the mean–variance criterion provides a subjective measure.
Furthermore, by comparing to the expected utility approach,
MacLean et al. (2011) concluded that, for less volatile financial
market, the mean–variance criterion yields a better investment
portfolio return.

It is important to emphasize that the optimal portfolio model of
Markowitz (1952) is a one-period model. If we are interested in a
dynamic portfolio selection strategy, it is important to distinguish
optimal strategy that is ‘‘pre-commitment’’ from ‘‘time-consistent
planning’’ because of the added possibility of re-optimizing and
re-balancing the portfolio at intertemporal times. After a decision
maker obtained his/her optimal dynamic strategy at time t1, the
decision maker might find that the adopted strategy from t1 does
not necessarily maximize his/her objective by the time he/she
progresses to time t2, where t2 > t1. In this situation, the decision
maker can either continue to adopt the original plan or to devise
a new plan that is ‘‘optimal’’ for him/her at time t2. Strotz (1955)
referred the former strategy as the ‘‘precommitment’’ strategy and
the latter as the ‘‘consistent planing’’ strategy. Strotz (1955) also
showed that the best investment strategy should be a plan for
which the investor will actually follow, e.g., a consistent planing
strategy.

1 Note that the work of Davis (2006) was done in 2000 but it was not formally
published until 2006.

The analytical solutions provided by Zhou and Li (2000) and
Li and Ng (2000) for, respectively, the continuous-time and mul-
tiperiod analogs of Markowitz (1952) are examples of precom-
mitment optimal strategies. To derive the optimal strategies that
are time consistent under the mean–variance criterion is consid-
erably more subtle. The complication is driven by the fact that
the mean–variance function is not separable so that the Bellman
optimality principle cannot be directly applied for deriving an op-
timal dynamic solution. This problem was not solved until an-
other decade later by Basak and Chabakauri (2010) who provided
a novel approach of obtaining a ‘‘consistent planing’’ solution to
the portfolio selection problem involving mean–variance objec-
tive. They used the total variance formula to derive an extended
Hamilton–Jacobi–Bellman (HJB) equation and ingeniously obtain
the optimal hedging strategywithout directly solving the extended
HJB equation as a partial differential equation. Subsequently Björk
and Murgoci (2010, 2014) developed a more rigorous theory for
general time-inconsistent problems by providing a formal way of
defining a ‘‘consistent planing’’ solution using game theoretic ap-
proach and providing the verification theorem. In recent years, the
time consistent planning strategies have also been widely studied
for decision problems in insurance, e.g., Li et al. (2012, 2015a,b),
Liang and Song (2015), Wei et al. (2013), Wong et al. (2014), Wu
and Zeng (2015), Zeng et al. (2013), Zhao et al. (2016) and Zhou
et al. (2016), just to name a few.

In this paper, we aim to establish a ‘‘consistent planning’’
optimal hedging strategy in the sense of Björk andMurgoci (2010).
The problem is solved by resorting to a dynamic programming
procedure and solving an extended HJB equation using a certain
change-of-measure technique. The solution we obtain is tractable
and to the best of our knowledge, this is the first time the
analytical solution exists for dynamic hedging of general European
options with basis risk under the mean–variance criterion. The
solution we obtained also reduces to the classical delta hedging
strategy when the two involved assets are indistinguishable and
the risk aversion coefficient in themean–variance objective goes to
infinity. For plain vanilla call options, the calculation of the optimal
strategy requires only aminimumamount of numerical procedure.
Examples based on hedging futures and European call options are
presented to highlight the importance of our proposed optimal
strategy, relative to other commonly adopted hedging strategies
that do not take into consideration the basis risk.

The rest of the paper proceeds as follows. The problem
formulation is given in Section 2 and the consistent planning
equilibrium solution is derived in Section 3. Discussions on some
special cases are presented in Section 4. Some numerical examples
are provided in Section 5 to highlight our theoretical results.
Section 6 concludes the paper. Finally, the Appendix contains
some technical proofs and semi closed-form expressions for the
equilibrium value functions of both futures and European call
options.

2. Formulation of the optimal hedging problem

Let us begin by first introducing the following notations. For
a function F(t, s1, s2, x), we use Fy to denote its first partial
derivativewith respect to (w.r.t.) variable ywhere y ∈ {t, s1, s2, x}.
Analogously, we use Fyz to denote its second derivatives w.r.t.
variables y and z where y, z ∈ {t, s1, s2, x}. Note that the function F
and its derivatives can be time-dependent processes. In this case,
each of the notation will be indexed by an argument t . Similarly,
if the arguments s1, s2 and x are also processes, then they will be
denoted by S1(t), S2(t) and X(t), respectively.

Consider a non-arbitrage market with two risky assets {S1(t),
t ≥ 0} and {S2(t), t ≥ 0} as well as a risk-free asset earning at a
constant rate of r > 0. The price processes of the two risk assets
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