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This paper introduces a probabilistic framework for the joint survivorship of couples in the context of
dynamic stochastic mortality models. The death of one member of a couple can have either deterministic
or stochastic effects on the other; our new framework gives an intuitive and flexible pairwise cohort-
based probabilistic mechanism that can account for both. It is sufficiently flexible to allow modelling of
effects that are short-term (called the broken-heart effect) and/or long-term (named life circumstances
bereavement). In addition, it can account for the state of health of both the surviving and the dying spouse
and can allow for dynamic and asymmetric reactions of varying complexity. Finally, it can accommo-
date the pairwise dependence of mortality intensities before the first death. Analytical expressions for
bivariate survivorship in representative models are given, and their sensitivity analysis is performed for
benchmark cases of old and young couples. Simulation and estimation procedures are provided that are
straightforward to implement and lead to consistent parameter estimation on synthetic dataset of 10000
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pairs of death times for couples.
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1. Introduction

It is reasonable for most of us to accept the premise that the
death of a spouse typically adversely affects the survivorship of
the bereaved partner. While it is clear that there are a great many
explanatory factors that shape the precise nature and intensity of
this phenomenon, we can easily arrive at several plausible factors,
such as the cohorts to which the partners belong, and the gender
and level of health of the surviving partner. It also makes sense
to allow this phenomenon to be time-dependent, with both short-
term and permanent impacts.

Several empirical studies (see Denuit et al. (2001) or Jag-
ger and Sutton (1991)) appear to confirm the common intuition
of dependence between the lifetimes of members of a couple.
However, according to Hougaard (2000), there are three aspects
of this bereavement effect to distinguish. The first is the common
shock effect, which accounts for simultaneous deaths of a couple
from a common disaster (see Bowers (1997) and recently (Su
and Furman, 2016)); the second is short-term dependence or the
broken-heart syndrome (see Parkes et al. (1969) and Jagger and
Sutton (1991)), which describes a period of higher mortality of an
individual immediately after their partner’s death, even though
the causes of the two deaths may appear to be independent. The
third phenomenon, long-term dependence, we will call life circum-
stances bereavement. In this work, we propose a framework which
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accounts for both short-term and long-term bereavement effects
but not the common shock effect.

The bereavement phenomenon is worthwhile investigating
from the perspective of both policy holders and issuers. For the
issuers, a robust model for joint life survivorship would be highly
beneficial for risk management of joint life insurance policies.
The robust assessment of risks of this type in their internal mod-
els would encourage insurance companies to pass the savings to
consumers, thus becoming more competitive. Given the current
regulatory frameworks such as Solvency II in Europe and OSFI
directives in Canada, such models would also reduce the capital
holdings required.

Up until now, one finds two broad classes of joint mortality
models in the literature. The first and larger class is a class of mod-
els starting from the works of Frees et al. (1996), Frees and Valdez
(1998), Youn and Shemyakin (1999), Carriere (2000), Youn and
Shemyakin (2001), Denuit et al. (2001), Luciano et al. (2008) and
the work of Luciano et al. (2012). These models have in common
copula-based dependence structures. The paper of Luciano et al.
(2008) makes a connection for the first time between dependence
structure derived by a copula approach and dynamic stochastic
mortality modelling in continuous time. The second class of models
is based on a Markov or semi-Markov chain modelling framework,
historically spanned by the works of Norberg (1989), Spreeuw and
Wang (2008), Ji et al. (2011) and Spreeuw and Owadally (2012).

Examples of stochastic mortality models of the single cohort
type cast in continuous time are given by Milevsky and Promislow
(2001); Dahl (2004); Biffis (2005); Cairns et al. (2006); Schrager
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(2006); Luciano and Vigna (2008) and Qian et al. (2010). Luciano
et al. (2008) model the joint mortality experience for members of
a couple with continuous time cohort models of affine type, as
in Luciano and Vigna (2008), and impose dependence between
lives by using copula functions. In our work, we similarly use
stochastic mortality models of affine type for mortality experience
of couples before the first death, but in contrast to Luciano et al.
(2008) we develop a clear probabilistic mechanism for the impact
of one life’s death on the other. Moreover, our new approach
allows for a natural and intuitive interpretation of short and long
mortality dependence along the lines of Spreeuw and Owadally
(2012). In addition, it can account for the state of health of both
the surviving and the dying spouse and thus allow for dynamic and
asymmetric reactions of varying complexity. Finally, it can accom-
modate the pairwise dependence of lives before the first death. Our
modelling approach can be combined with existing mathematical
finance techniques for pricing and hedging purposes, and hence
has distinct comparative advantages over existing approaches.

The rest of this paper is organized as follows. In Section 2 we
introduce the probabilistic framework and develop our main result
and how it can be used. Section 3 focuses on the affine modelling
setting, where we give a representative example called the Inde-
pendent OU Exponential Decay Model (IOUED model). Section 4 re-
ports the details of an exact sensitivity analysis for the probability
density functions arising for two representative cases, a young and
an old couple. Section 4 also includes a simulation procedure and a
maximum likelihood estimation methodology. Section 5 concludes
the paper. Some of the more detailed computations are reported in
the Appendix.

2. A probabilistic framework

The aim of this paper is to propose a probabilistic framework
to model the joint life expectancy of a couple or spousal pair,
imagined as two adults cohabiting and thus sharing a common en-
vironment. Importantly, the mortality rate of the surviving partner
will be assumed to increase after the first death in the couple. The
proposed model will adapt the principles now known as reduced
form modelling (RFM), as developed in financial mathematics for
studying credit risk, the financial risk that a corporate borrower
defaults on its obligations. Reduced form modelling is based on
an intuitive picture that death occurs like a “bolt of lightning”
whose actual timing is unpredictable, but with an instantaneous
likelihood, or intensity, that is predictable.

2.1. Model setting

The model is formulated within a probability space (£2, F, P)
where P is called the real-world probability measure. This probabil-
ity space must be rich enough to support a d-dimensional Brown-
ian motion W, random variables Z; and Z, having unit exponential
distribution, and a single random variable U with the standard
uniform distribution. The collection {W, Z;, Z,, U} is a fully inde-
pendent collection. The Brownian filtration G; = o(W;),s < tis
defined for t € [0, T] over a sufficiently long finite time horizon T.

We label the two partners of a couple as partner 1 and partner
2, and by 77 and 7, we denote their time of death. Let p € {1, 2}
mark the identity of the partner who dies first, henceforth called
the deceased partner, and q the identity of the surviving partner,
called the bereaved partner. If p = 1 and q = 2 then the first death
time is t, = 77 and the second death time is Ty = t,. Similarly, if
p=2andq=1,thent, =y and 7y = 1.

On the probability space, let us consider a pair of predictable
Gq-adapted processes )\rl and kf that prior to the first death time
7, of a member of the couple represent the instantaneous mortality

intensities of partner 1 and partner 2. In later sections, we will as-
sume that mortality intensity processes are of so-called affine type
(see Filipovi¢ (2009)) since they give an appropriate compromise
between modelling flexibility and tractability.' The processes A}
and A? are driven by W. Each realization of the random elements
{W, Z, Z,, U} determines a realization of times of deaths of both
members of a couple. The first time of death , is defined to be

T = inf{t >0

/ (AL 4 A2)du > zl] ) (2.1)
0

Next, the identity of the deceased partner is determined in
terms of the trigger U as

Ay
{p=1}={ﬁ=rp}=:Usm} (2.2)

Ay

=2l={n=1}=3U> —2_— 1, 2.3
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where A! and )@p are the mortality intensities at the moment of
the first death.

After the first death t,, the mortality intensity of the bereaved
partner is assumed to be a modification A{ of A! where again the
subscript q labels the bereaved partner. The relationship between
A¢ and A] will characterize the extra effect on one’s health caused
by the death of one’s spouse. We call the surviving partner the
bereaved partner to reflect the notion that the impact of the death
of one’s spouse on one’s health is usually adverse. After the mo-
ment of the first death, the adjusted mortality intensity process of the
bereaved partner is A%. The change in mortality process r? defined as

rd =30 —ad (2.4)

can be regarded as a mathematical aggregation of all aspects of the
bereavement effects.2

The process A] is a modification of A9 with an explicit structural
break at time 7, that reflects the direct effect on one’s mortality
rate that happens at the death of one’s spouse. In each alternative,
the time of death of the bereaved partner or the second time of death
74 is determined conditionally by

/ Adu > zz} ) (2.5)

T

Tq = inf{t > T,

Later in the paper we explore a specification of the processes
rf that leads to flexible mortality structures which admit tractable
computations.

2.2. Using the model

It is important to understand at the outset how RFM extends to
multiple individuals, or in our context to multiple couples, within
a large population. This problem is analogous to portfolio credit
risk where it has been found to have certain subtleties. First we
append an index n € {1,...,N} := [N] to each couple-specific
element, including the collection {W®), Z&”), Zé”), U™}, vy and the
mortality intensity pairs (A1, A2)™. The main issue to resolve is
to specify dependence structures both within each couple, and
across the population. For couple n, the d-dimensional Brownian
motion W determines the pair of intensities (A!, A%)™. It has
become common to view the correlation structure across the pop-
ulation as built up from systematic risk factors that are common

1 By assuming that the probability space supports appropriate jump processes,
the framework easily allows consideration of affine jump-diffusion processes.

2 |t is assumed that the probability space is rich enough to support this process.
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