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a b s t r a c t

The predominant way of modelling mortality rates is the Lee–Carter model and its many extensions. The
Lee–Carter model and its many extensions use a latent process to forecast. These models are estimated
using a two-step procedure that causes an inconsistent view on the latent variable. This paper considers
identifiability issues of these models from a perspective that acknowledges the latent variable as a
stochastic process from the beginning. We call this perspective the plug-in age–period or plug-in age–
period–cohortmodel. Defining a parameter vector that includes the underlying parameters of this process
rather than its realizations, we investigate whether the expected values and covariances of the plug-in
Lee–Carter models are identifiable. It will be seen, for example, that even if in both steps of the estimation
procedurewehave identifiability in a certain sense it does not necessarily carry over to the plug-inmodels.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Interest in the age-at-death distribution can be traced back
to the works of John Graunt and Edmond Halley in 1662 and
1693, respectively; see Hald (2003, Chapters 7 and 9). Deriving
analytical expressions for the age-at-death distribution or, which
is the same, for the force of mortality goes back to the work of
Gompertz in 1825 (or even to de Moivre who assumed a constant
force of mortality for his work on annuities). For further analytical
expressions for the force of mortality see, for instance, Bowers et
al. (1997, Section 3.7). Continuing decrease of mortality rates (and
consequently continuing increase of life expectancies) in many
developed countries over the last six or seven decades has brought
the need of forecasting mortality rates to a leading edge. A pre-
requisite for extrapolative methods to forecast mortality rates is a
model that captures the main features of observed mortality rates.
The dominant model of this approach is the Lee–Carter model
(cf. Lee and Carter (1992)) and its many variants; for overviews
on the original model and on the many extensions that have been
proposed one may refer to Booth (2006), Booth and Tickle (2008),
Cairns et al. (2008), Cairns et al. (2009), Currie (2016), Haberman
and Renshaw (2008) and Haberman and Renshaw (2011), and the
references therein.
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The basic Lee–Carter model is an age–period model that takes
as its starting point a non-linear parametrization of the logarithm
of the central forces of mortality. It is given by

log(mx,t ) = αx + βxκt + ϵx,t , x = 0, . . . , X, t = 1, . . . , T ; (1)

cf. first displayed equation in Lee and Carter (1992, Section 3).
Heremx,t are the ‘observed’ central forces of mortality and X is the
maximal age (either in the sample or themaximumage of interest).
The errors ϵx,t are assumed to havemean zero and variance σ 2

ϵ . The
(X + 1)-dimensional parameter vectors α = (α0, . . . , αX ) and β =

(β0, . . . , βX ) are interpreted as age-specific constants. Because in
a first step κ = (κ1, . . . , κT ) is considered to be a T -dimensional
parameter vector, the model for the expected values of log(mx,t )
defined by (1) is clearly over-parametrized. The solution proposed
by Lee and Carter to ensure identifiability of the first moments is
to impose the constraints

∑X
x=0βx = 1 and

∑T
t=1κt = 0, cf. first

paragraph of Section 3 in Lee and Carter (1992). Under these
constraints, called ‘ad hoc identification’ by Nielsen and Nielsen
(2014), αx + βxκt = α̃x + β̃xκ̃t , x = 0, . . . , X, t = 1, . . . , T imply
that αx = α̃x, βx = β̃x, x = 0, . . . , X , and κt = κ̃t , t = 1, . . . , T .
Instead of usingwhat has been called ‘ad hoc identification’ one can
employ the so-called canonical representation which also solves
the identifiability issue and provides additional insight into the ge-
ometry of themodel; see Nielsen andNielsen (2014, Section 6) and
also (Kuang et al., 2008a) for a linear age–period–cohort model.
The cohort extension of the age–period model given by Eq. (1) is
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defined by

log(mx,t ) = αx + β (0)
x ιt−x + β (1)

x κt + ϵx,t . (2)

Here ι = (ι1−X , . . . , ιT ) represents cohort effects. This cohort
extension was introduced by Renshaw and Haberman (2006).
Again this model is over-parametrized; see Section 3.3 for more
details on that.

To be able to forecast with models as given by Eqs. (1) and (2)
a two step procedure is applied. In a first step the parameters α, β
and κ (model (1)) or α, β(0), β(1), κ and ι (model (2)), respectively,
are estimated. In the second step a time seriesmodel that allows for
forecasting is fitted to the estimated κ̂-vector or to the estimated κ̂
and ι̂-vectors. In the following, we will refer to the classical Lee–
Carter model and its cohort extension as fully parametric age–
period or age–period–cohort Lee–Carter models, respectively. This
denomination relates to the treatment of estimated age and cohort
effects as factor scores, i.e. estimates of T and T + X dimensional
parameter vectors, in step one of the estimation process (see
e.g. Rencher (2002, Section 13.6) for the notion of factor scores).
Imposing a stochastic model on the estimates of these parameters
in step two is conceptually inconsistent and leads to problems
when specifying identifiability constraints. For example, it is a
priori unclear whether the forecast from the imposed stochastic
model depends on the chosen identification scheme for the original
parameters α, β and κ (model (1)) or α, β(0), β(1), κ and ι (model
(2)). Formodel (1) this question has been addressed by Nielsen and
Nielsen (2014) who build on Kuang et al. (2008b) where the same
question is analysed for an additive age–period–cohort model; for
more information on additive age–period–cohort models and an
application to a real data set see Kuang et al. (2011). Moreover, as
detailed in Section 2, the ‘ad hoc identification’ constraints lead to
implausible constraints on the properties of the stochastic model
imposed onto the factor scores. An alternative perspective on the
Lee–Carter model is to replace κ, or κ and ι, by time series models
from the beginning. We will denote these models as plug-in age–
period and age–period–cohort Lee–Carter models respectively.
Plug-in age–period Lee–Carter models have so far been considered
in Girosi and King (2007), De Jong and Tickle (2006) and Fung et
al. (2016). For the latter paper see in particular their remark 2.1.

Recently, Leng and Peng (2016) considered a simplified fully
parametric age–period Lee–Carter model and showed that the
two step estimation procedure may lead to inconsistent estima-
tors. A pre-requisite for consistency is identifiability. This paper,
therefore, considers the interplay between identifiability of fully
parametric and plug-in Lee–Carter models. Suppose that we have
an identification scheme for a fully parametric Lee–Carter model.
Furthermore, suppose thatweuse an identifiable time seriesmodel
for κ or identifiable time series models for κ and ι, respectively. Do
the plug-in Lee–Carter models inherit identifiability from identifi-
ability of the fully parametric Lee–Cartermodels and the identified
time seriesmodels?We show that this needs not be the case. More
precisely, we will see that the Lee–Carter model, i.e. (1), under the
above mentioned constraints on β and κ combined with a time
seriesmodelwith identified firstmoments fails to be identifiable in
its first moments. Only by adding secondmoments one can ensure
identifiability.

Furthermore, assume that identifiable time series models are
plugged in into a non-identified fully parametric Lee–Cartermodel.
Is it possible that the resulting plug-in Lee–Carter model is never-
theless identified? We will see that this possibility can occur. We
address these two questions in Section 3 by considering simple
but very popular times series models for κ and ι. More precisely,
we first look at the age–period model (1) if a random walk is used
to model the factor scores for κ. Afterwards we analyse the age–
period–cohort Lee–Carter model (2) if two independent random
walks are used to model the factor scores for κ and ι. Having

addressed the above questions and having obtained identifiability
results if random walks are plugged in we briefly extend our con-
siderations to more complicated time series models because from
an applied point it is important that the class of time series models
for which plug-in models are identifiable is not too narrow. This
will be done in Section 4. Our findings concerning identifiability
of plug-in models continue to hold for generalized linear models
whose index function is modelled in the fashion of Eqs. (1) and
(2).

The rest of the article is organized as follows: In Section 2
we briefly discuss inconsistencies that arise from the two step
procedure. Sections 3 and 4 are as described above. These sections
are followed by a section where we discuss how forecasts can
be obtained with plug-in Lee–Carter models. We conclude with a
discussion. All proofs are presented in the appendix.

2. Stochastic process view on the Lee–Carter constraints

If we impose a stochastic model on (κt ) as done in the statistical
analysis of the fully parametric Lee–Carter model, the identifying
restriction

∑T
t=1κt = 0 becomes a constraint on the possible

realizations of the stochastic process (κt ). As such the constraint
does not seem to be sensitive, because it implies inconsistencies
in the modelling procedure. An early reference that differentiates
sets of constraints depending on whether the factor(s) is/are as-
sumed to be an unobserved random process or unobserved but
deterministic is Anderson and Rubin (1956). Here we examine
two inconsistencies that arise if we constrain the realizations of
the stochastic process (κt ).

1. Dynamic view on the constraint: Suppose that we estimated
the model based on data up to and including T̆ and that
we now want to update our estimates based on data up
to and including T̆ + 1. If the realization of (κ1, . . . , κT̆ )
fulfils the constraint, then we must have κT̆+1 = 0, because
otherwise

∑T̆+1
t=1 κt = 0 is impossible. This is because we

cannot change the realization of (κ1, . . . , κT̆ ) which is given
to us. This is different from increasing X , because β is part
of the modelling process and not given exogenously to us as
the realization of a stochastic process. Notice also that the
same reasoning applied sequentially to T̆ + (k − 1), k ≥ 2,
would imply κT̆+k = 0, k ≥ 2.

2. Distributional view on the constraint: Assume, for instance,
that the outcome of the second step of the statistical analysis
done by Lee and Carter is that (κt ) follows a random walk
with or without drift. Assume additionally that the random
walk starts in c ∈ R, i.e. κ0 = c , and that the innovations
are normally distributed or more general that the joint dis-
tributions of the innovations possess a probability density
function with respect to Lebesgue measure then the event
{
∑T

t=1κt = 0} has probability zero for every T ≥ 1 regard-
less of the starting value c , because {x ∈ RT

|
∑T

i=1xi = 0} is
a hyperplane inRT . Consequently, under these assumptions
the probability that the constraint is fulfilled equals zero.

3. Identifiability of plug-in age–period and age–period–cohort
Lee–Carter models

3.1. Preliminaries

Throughout and irrespective of whether we consider an age–
period or an age–period–cohort model we assume that

Eθ(log(mx,t )) = fθ(x, t), x = 0, . . . , X, t = 1, . . . , T ,

Covθ(log(mx,s), log(my,t )) = gθ(x, y, s, t),
x, y ∈ {0, . . . , X}, s, t ∈ {1, . . . , T },
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