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1. Introduction

The subject of ruin theory has historically attracted much
attention in the actuarial literature, and of central importance
are the ruin probabilities themselves. Due to their mathematical
complexity, various functional aspects of the ruin probabilities
have been studied and established. In particular, the ruin
probability in the classical compound Poisson (CP) risk model, and
more generally the Sparre Andersen risk model, is known to be a
compound geometric tail of the form

G =1-Gx =) (1-§)¢"F"x)., x=0, (1.1)
n=1

with0 < ¢ < 1,and F*"(x) = 1 — F*"(x) the tail of the dis-
tribution of the n-fold convolution of the distribution function (df)
F(x) = 1—F(x) withitself,i.e. [;° e™*F*(dx) = { [ e *F(dx)}".
See, for example, Chapter VI of Asmussen and Albrecher (2010)
for a more detailed discussion. Throughout this paper, we shall as-
sume that F is differentiable with probability density function (pdf)
fx) =F ).
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Functional properties which carry over from F to G include
complete monotonicity, log-convexity, and decreasing (i.e., nonin-
creasing) failure rate (DFR), among others (e.g., Szekli, 1995, p. 33,
and references therein). Compared with these well-known prop-
erties, the weaker property of convexity of the compound geomet-
ric tail (1.1) has drawn less attention in the ruin theory literature.
However, convexity is not only an interesting (albeit challenging)
theoretical problem in this context, but it also plays a crucial role
in optimization problems involving the ruin probabilities. This in-
cludes research problems on the ruin probability minimization, a
common optimization criterion in the actuarial literature; see, for
instance, Young (2004), Promislow and Young (2005), and Bayrak-
tar and Zhang (2015). Note that the minimized ruin probabilities in
the aforementioned papers are all convex, except for Bayraktar and
Zhang (2015) where the minimized ruin probabilities can nonethe-
less be converted to a convex function through some transforma-
tion. In this paper, we will show that there is a trap in the ruin
probability minimization problem. In fact, for many jump distri-
butions in classical insurance risk processes, convexity may not
hold which causes the standard Hamilton-Jacobian-Bellman (HJB)
equation approach in optimization problems to not be directly
applicable. Hence, the knowledge of convexity is fundamentally
important in an optimization context. As such, this provides the
motivation for the present paper where we provide conditions
which are either sufficient or necessary for the ruin probability to
be convex.
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More generally, we define the tail W(x) = 1 — W (x) (of what
shall refer to as the compound geometric convolution) by

WX = G*A®X) = AK) + [ G(x —y)AWdy), x>0, (1.2)

0
where A(x) = 1 — A(x) is an absolutely continuous df with
differentiable density a(-) satisfying A(0) = 0. The df A(-) is
of much interest in a variety of problems in applied probability,
including in particular, the classical CP risk process perturbed by
a Brownian motion (e.g., Section 9.3 of Willmot and Lin, 2001). As
will be demonstrated, this formulation is also sufficient to analyze
the non-perturbed case as well (see Section 2.1 for more details).
It is well known and easily established that W (x) in (1.2) satisfies
the defective renewal equation

X
W) = ¢/ W —yf Wdy + ¢F(x) + (1 — 9)A®), (1.3)
0
for x > 0 and that W(x) = G(x)/¢ in the special case when
A(x) = F(x). Thus convexity of G(x) may be ascertained as a special
case of that of W (x). We remark that (1.3) is itself a special case of
the general defective renewal equation

m(x) = «z»/ mx —yf () dy + v, x =0,
0

whose solution is given by
o X

meo =60+ 30" [ vx- P, xzo
n=1 0

(see, e.g., Section 3.5 of Resnick, 2013). For related work involving

renewal equations, see pp. 811-821 of Hansen and Frenk (1991).
Some general convexity results of G(-) and W (-) are given in the

following lemma which will be used in the later sections.

Lemma 1.1. (a) The compound geometric tail G(-) given in (1.1) is
convex on (0, oo) if F(-) is DFR with differentiable density.

(b) The compound geometric convolution W (-) given in (1.2) is con-
vex on (0, x), wherex ;= sup{x > 0: q(t) > Oforallt € [0, x]}
and

qx) = —(1—¢) {d®) + pa@)f 0}, x=0. (1.4)

Proof. (a) The result is classical and follows immediately from
Proposition 2.1 of Szekli (1986), and Shanthikumar (1988). See also
Hipp (1990) for an insurance related discussion.

(b) Assume that the df A(:) has a differentiable density a(:).
Differentiation of (1.3) (together with the fact that W(0) = 1)
yields

W) = ¢ / W' (x = Yf )dy + GW(O)f (x)
0
— $f 0 — (1 — B)alx)
= ¢>/ W (x —y)f(dy — (1 — ¢)ax), x> 0.
0

Differentiating once again, W”(-) is shown to satisfy the defective
renewal equation

W' (x) = ¢ / W (x = DfO)dy + 0, x> 0,
0

where q (-) is defined in (1.4). Clearly, W (-) is convex on (0, X). ®

Itis also instructive to note that [;~ q(x)dx = (1—¢)*a(0) > 0,
implying that it is not possible that q(x) < 0 for allx > 0.

The rest of the paper is structured as follows. In Section 2, we
study the convexity of the ruin probabilities in the CP risk model

with and without a diffusion term. Two types of ruin probabilities
will be considered, namely infinite-time ruin probabilities and ruin
probabilities over an independent exponential time horizon (also
referred to as the Laplace transform of the time to ruin). The analysis
is first performed for the latter, while several conclusions will be
made for the former through limiting arguments. An example of
non-convex minimized ruin probability is considered in Section 3.

2. Convexity in classical risk models

For completeness, we first introduce the classical CP risk model
perturbed by an independent Brownian motion which is defined
as

N¢
X, :x—l—ct—i—oB[—ZYi,
i=1

(2.1)

where the initial surplus X = x > 0, the Gaussian coefficient
o > 0, {Bt}t>0 is a standard Brownian motion, {N;}>¢ is a Poisson
process with rate A > 0, and {Y;};>; is a sequence of i.i.d. positive
rv's with common df P(-) = 1 — P(-) and mean i > 0. We assume
that {B;}¢>0, {N¢}t>0 and {Y;};>1 are mutually independent.

For the insurance risk process (2.1), let 7,7 = inf{t > 0 : X;
< 0}. We define the probability of ruin before an independent
exponential clock e with mean 1/6 > 0 as

Vs (x) =P (15 <es, 7y <00 |Xo=x)

=F [e‘”o_liz_@o} 1Xo = X] ,
0

for x > 0 where 14 is the indicator function which takes the value
1 if A is true and 0, otherwise. Note that the infinite-time ruin
probability ¥ (x) = P (t, < 00 |Xo = x) is a special case of (2.2)
with § = 0. For the infinite-time ruin probability v (-), it is further
assumed that the insurance risk process {X;},-, has a positive drift,
i.e. the positive safety loading condition ¢ > A holds.

(2.2)

2.1. Non-perturbed CP risk model (o = 0)

For the non-perturbed CP risk model (i.e., a process {X;};- of
the form (2.1) with & = 0), it is known from e.g., Section 9.2
of Willmot and Lin (2001) that the ruin probability ¥s (x) can be
expressed by the compound geometric tail, that is,

w0 =G =22 w0, 23)
where W (-) is as given in (1.2) with
R ‘=
= 7/ e "P(t)dt, (2.4)
¢ Jo
x [(O° ,—rtp
F) = A(X) =B, (x) = 1 — e [~ ePnde >0, (25)

Jo e tP(t)de

and r € [0, 2%2) is the unique non-negative solution (in s) to

AP (s) = A+ 8 — cs, where p(s) = [;~ e *'P(dt) is the Laplace-
Stieltjes transform of P(-). When § = 0, note that r = 0.

From Theorem 9.2.2 (a) of Willmot and Lin (2001), if the claim
size df P(-) is DFR, so is the df F () defined in (2.5). Thus, we deduce
from part (a) of Lemma 1.1 and (2.3) that 15 (-) is convex on (0, 00).
More specifically, for the infinite-time ruin probability v (-), it is
easy to see from (2.5) withr = 6 = 0 that F(-) is DFR under
the weaker condition that the df P(-) has an increasing (i.e. non-
decreasing) mean residual lifetime (IMRL) (see, e.g., Section 2.4 of
Willmot and Lin, 2001). Once again, from part (a) of Lemma 1.1,
Yo(+) is convex on (0, co) whenever the df P(-) is IMRL.



Download English Version:

https://daneshyari.com/en/article/5076192

Download Persian Version:

https://daneshyari.com/article/5076192

Daneshyari.com


https://daneshyari.com/en/article/5076192
https://daneshyari.com/article/5076192
https://daneshyari.com

