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a b s t r a c t

This study examines optimal investment and reinsurance policies for an insurer with the classical surplus
process. It assumes that the financial market is driven by a drifted Brownian motion with coefficients
modulated by an external Markov process specified by the solution to a stochastic differential equa-
tion. The goal of the insurer is to maximize the expected terminal utility. This paper derives the Hamil-
ton–Jacobi–Bellman (HJB) equation associated with the control problem using a dynamic programming
method.When the insurer admits an exponential utility function, we prove that there exists a unique and
smooth solution to the HJB equation. We derive the explicit optimal investment policy by solving the HJB
equation.We can also find that the optimal reinsurance policy optimizes a deterministic function.We also
obtain the upper bound for ruin probability in finite time for the insurer when the insurer adopts optimal
policies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Almost all insurance companies have a reinsurance program.
The ultimate goal of the program is to reduce their exposure by
passing part of a loss to a reinsurer or a group of reinsurers. With
reinsurance, the insurer can issue policies with higher limits, thus
being able to take on more risk because some of that risk is now
transferred to the reinsurer. Due to this fact and the regulatory
requirements, the reinsurance business plays an important role
in the operations of an insurance company. Consequently,
research on optimal reinsurance policies for insurers has attracted
increasing attention from academics and industries. For example,
Højgaard and Taksar (1998) studied optimal reinsurance policies
for maximizing terminal utility with transaction costs, Schmidli
(2001) studied optimal policies for minimizing ruin probability
under a diffusion model and the classical risk model, and
Taksar and Markussen (2003) studied optimal reinsurance for
large insurance portfolios. Besides reinsurance, investment is an
increasingly important element in the insurance business that can
provide the insurer with potential profit. Thus, optimal investment
and reinsurance problems for insurers have drawn great attention
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in recent years. For example, see Browne (1995), Fleming and Sheu
(2000), Gaier et al. (2003), Hipp and Plum (2000), Hipp and Plum
(2003), Irgens and Paulsen (2004), Schmidli (2004), Fleming and
Pang (2005), Yang and Zhang (2005), Zhang and Siu (2009), Bai
and Guo (2008), Fernández et al. (2008), Luo et al. (2008), Azcue
and Muler (2009), Zeng and Li (2011), Li et al. (2012), Badaoui and
Fernández (2013), Meng et al. (2013) for optimal investment and
reinsurance policies under a variety of models and performance
functions.

Continuous time frameworks usually assume that the returns
from risky assets are stationary (i.e., the coefficients of the
dynamics of the returns are constant). Occasionally, closed form
solutions to the optimal investment policies are derived under
some particular utility function. In reality, the returns from the
risky assets might not be stationary. Therefore, it would be of
practical relevance and academic importance to consider financial
modelswith non-constant coefficients (see Jean-Peirre et al., 2000;
Tankov, 2003; Castañeda-Leyva and Hernández-Hernández, 2005;
Fleming andHernández-Hernández, 2005; Badaoui and Fernández,
2013 for examples). Markov-modulated financial models are one
of the most significant models with random coefficients and have
been widely used in financial mathematics research (c.f. French
et al., 1987). Meanwhile, Markov-modulated risk models contain
several very important stochastic volatility models, and can thus
be seen as an explanation formanywell-known empirical findings,
such as volatility smile, volatility clustering, and the heavy-tailed
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nature of return distributions. Thus, for an insurance company, it is
worth investigating optimal investment and reinsurance policies
in a Markov-modulated financial market. Zeng and Li (2011)
studied optimal investment and reinsurance for an insurer in a
Helston stochastic volatility model, where the volatility of the
financial market is modulated by an external stochastic process.
Badaoui and Fernández (2013) studied optimal investment for an
insurer in a Markov-modulated model. This paper also focuses on
the optimal investment and reinsurance problem for an insurer,
assuming that the financial market is Markov modulated and the
goal of the insurer is to maximize the expected terminal utility.
To some extent, we can view the problem discussed in this paper
as a subsequent work of Zeng and Li (2011) by incorporating
the classical risk model and considering a more general Markov-
modulated financial model, or a subsequent work of Badaoui and
Fernández (2013) by introducing reinsurance into the decision.
It turns out that when the insurer admits an exponential utility
function, the closed form expressions for optimal investment
policies are derived and the optimal reinsurance policies can be
determined by finding the maximizer of a deterministic function.
The upper bound estimation for ruin probability is presentedwhen
the insurer adopts the optimal polices.

The rest of this paper is organized as follows. Section 2 presents
themodel and problemdiscussed in this paper. A verification theo-
rem of the control problem is presented, which is used to check the
results obtained in Section 3. Section 3 focuses on the exponential
utility function and gives the closed form expressions for optimal
policies when the claims have an exponential distribution. The op-
timal reinsurance policy can be tracked by solving the maximizer
of a deterministic function. Section 4 presents the upper bound es-
timation for ruin probability when the insurer follows the optimal
policies. For reading convenience, some proofs are given in the Ap-
pendix.

2. The model, problem and verification theorem

Assume that there are two kinds of assets available for
investors: one risky asset and one risk-free asset. One popular
framework of risky asset is specified by (c.f. Hipp and Plum, 2003;
Yang and Zhang, 2005)

dSt = St (µdt + σdB1t) , (2.1)

and the dynamic of risk-free asset price is

dS0t = S0t rdt. (2.2)

In this paper, we assume that (2.1) and (2.2) are modulated by
an external stochastic process. More precisely, the dynamic of the
risky asset in this paper is
dSt = St


µ (Zt) dt + σ (Zt) dB1t


,

S0 = 1, (2.3)

where µ(·), σ (·) are the stochastic investment return rate and
volatility of the risky asset, respectively. The dynamic of the
external factor is specified by the solution to the following
stochastic differential equation (SDE)
dZt = g (Zt) dt + βdB2t ,
Z0 = z, (2.4)

where B1t , B2t are correlated Brownianmotionswith coefficient ρ.
Our model also contains a risk-free asset specified by

dS0t = S0t r (Zt) dt, (2.5)

where r(·) is the interest rate function. We interpret the process Zt
as the behavior of some economic factor that affects the dynamics
of the risky and risk-free assets.

The classical surplus process of an insurer is

Rt = x + ct −

Nt
i=1

Yi, (2.6)

where x > 0 is the initial surplus, c is the positive constant
premium income rate, and Nt is the total number of claims up to
time t , which is a Poisson process with intensity λ. Yi denotes the
size of the ith claim. Assume that {Yi, i = 1, 2, . . .} is a sequence of
i.i.d positive random variables with finite expectation. Denote the
arrival time of the ith claim by Ti. More details about the classical
surplus process can be found in Asmussen and Albrecher (2010).
We assume that the sequence {Yi, i = 1, 2, . . . , } is independent
of {Nt , t ≥ 0} and {Bit , t ≥ 0, i = 1, 2}.

The insurer has the possibility to invest in the financial
market and to take reinsurance. The reinsurer charges the
reinsurance premium as adequate compensation for assuming the
risk transferred from the insurer. The retention level for the insurer
at time t is bt ∈ [0, 1], which means that for each claim Y arriving
at time t , the part of the claim the insurer pays is btY and that paid
by reinsurer is (1 − bt)Y . Accordingly, the insurer has to pay the
insurer a premium rate of c̃(bt) for this reinsurance. Here,we adopt
assumptions about c̃(b) similar to those in Schmidli (2002).

Since we assume a finite expectation for each individual claim,
it is natural to assume that c̃(0) < ∞. We require

¯
b to prevent

that the reinsurance of an insurer’s entire claim, and thus an
insurer never goes bankrupt for all x > 0. This is impossible from
practical view. That c̃(b) is decreasing is natural, otherwise, more
reinsurance would be cheaper.

The classicalmodel (2.6)with reinsurance function c(b) is given
by

Rb,c̃(b)
t = x +

 t

0


c − c̃ (bs)


ds −

 t

0
bs−d


Ns
i=1

Yi


.

By adding different forms of c̃(b), the model discussed here can
cover many reinsurance premium principles, for example, see
Schmidli (2002) for more details. Let Xt and Kt denote the insurer’s
wealth and the amount invested in the risky asset at time t ,
respectively; then, the remaining reserve Xt − Kt is invested in the
risk-free asset. Denote the wealth process of the insurer with Xs =

x, Zs = z under investment and reinsurance policies {(Kt , bt), t ∈

[s, T ], 0 ≤ s < T } by X s,x,z,K ,b
t . Once the insurer takes both

reinsurance and investment into account, the control systemof our
problem evolves as

d

X s,x,z,K ,b
t
Zt


=


c − c̃(bt) +


µ(Zt) − r(Zt)


Kt + r(Zt)X

s,x,z,K ,b
t


g(Zt)


dt

+


Ktσ(Zt) 0

0 β


d

B1t
B2t


+

−bt−d


Nt
i=0

Yi


0

 (2.7)

with Xs = x, Zs = z, 0 ≤ s ≤ T and with the convention that0
i=1 Yi = 0.

Definition 2.1. A pair of strategies (K , b) = {(Kt , bt), 0 ≤ t ≤ T }

are admissible if they satisfy the following conditions:

(1) The strategies Kt and bt are predictable with respect to the
filtration Ft given by

Ft = σ

B1s, B2s, Yi1[i≤Ns−], 0 ≤ s ≤ t, i ≥ 1


. (2.8)
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