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a b s t r a c t

This study analyzes the impact of contagion between financial and non-life insurance markets on the
asset–liability management policy of an insurance company. The indirect dependence between these
markets is modeled by assuming that the assets return and non-life insurance claims are led respectively
by time-changed Brownian and jump processes, for which stochastic clocks are integrals of mutually self-
exciting processes. This model exhibits delayed co-movements between financial and non-life insurance
markets, caused by events like natural disasters, epidemics, or economic recessions.
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1. Introduction

Non life insurance claims, by nature, are not correlated to
financial markets, excepted in case of events like natural disasters,
epidemics, or serious economic recession. For example, in 2003,
the severe acute respiratory syndrome (SARS) spread across
several countries and affected with a delay the insurance industry
in different ways. Some areas of impacted insurance operations
are clear—event cancellations coverage, travel insurance and life
and health policies. This epidemic also slowed down economic
exchanges and indirectly caused turmoil in financial markets.
More recently, during the financial crisis of 2008, the number of
claims covered by credit insurances surged in US, as underlined
in a recent report from the IMF (2016). As last example, we
mention climate changes. It is already affecting and will over time
significantly affect the incidence of natural conditions such as:
tropical cyclones; winter storms; wild-fires; hail storms; lightning
strikes; droughts and floods. These events are expected to affect
significantly property claims to non-life insurers. In parallel,
climate change will have a huge economic and social impact and
will lead to financial instability. These observations motivate us to
study the influence of a potential contagion between the insurance
and financial markets on the asset–liability management policy of
insurers.
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The literature about the modeling and management of
non-life insurance company is vast. The starting point of research
in this field is the classical Cramer–Lundberg (1903) risk model,
in which the arrival of claims is modeled by a Poisson process.
Since then, many extensions have been developed and proposed
bounds on the insurer’s ruin probability in various frameworks.
Later, Björk and Grandell (1988) and Embrechts et al. (1993) in-
troduced a Cox process in the Cramer–Lundberg model, for the
modeling of claim arrivals. Albrecher and Asmussen (2006) stud-
ied a Cox processwith shot noise intensity. Dassios and Zhao (2011,
2012) analyzed the clustering phenomenon of claims, caused by a
self-exciting process. Another strand of the literature focuses on
the optimization of investment, reinsurance and dividend poli-
cies, in a Cramer–Lundberg approach. For example, Browne (1995)
showed in a one-dimensional diffusion model that the strategy
maximizing the expected exponential utility of terminal wealth
also minimizes the ruin probability. Asmussen and Taksar (1997)
studied the optimal dividend policy for an insurer. Hipp and Plum
(2000) optimized the investment policy of a non life insurer’s sur-
plus, in a Brownian setting. Schmidli (2002, 2006) instead of max-
imizing the utility of the surplus or dividends, adapted the in-
vestment and reinsurance strategies to minimize the probability
of ruin. Kaluszka (2001, 2004) examined the optimal reinsurance
problem under various mean–variance premium principles. Yuen
et al. (2015) considered the optimal proportional reinsurance strat-
egy in a risk model with multiple dependent classes of insurance
business. And recently, Yin and Yuen (2015) studied the optimal
dividend problems for a jump diffusion model with capital in-
jections and proportional transaction costs. Whereas Zheng et al.
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(2016) investigated the robust optimal portfolio and reinsurance
problem for an ambiguity-averse insurer.

This work studies the optimal proportional reinsurance,
dividends and asset allocation for a non-life insurer, in presence
of a contagion risk between financial and insurance activities.
Drawing on the theoretical and empirical background regarding
the market time scale, as in Ané and Geman (2000) or Salmon and
Tham (2007),we build time-changeddynamicswith chronometers
that are integrated positive Hawkes processes. This approach,
inspired fromHainaut (2016d) introduces a nonlinear dependence
between assets and liabilities. Hawkes processes developed by
Hawkes (1971a,b) andHawkes andOakes (1974), are parsimonious
self-exciting point processes for which the intensity jumps in
response and reverts to a target level in the absence of event. This
dynamics is increasingly used in finance to model the clustering
of shocks. Empirical analysis conducted in Aït-Sahalia et al. (2015,
2014) or in Embrechts et al. (2011) emphasizes the importance
of this effect in stocks or CDS markets. They also underline
that clustering is not characterized by a single jump but by
the amplification of this movement that takes place over days.
Recently, Hainaut (2016a,b) detects self-excitation in interest rate
markets. And the paper of (Hainaut, 2016c) analyzes the impact of
the clustering of jumps on prices and risk of variable annuities. In
this work, Hawkes processes determine the pace of market clocks.

This research contributes to the literature in several directions.
Firstly, it is an elegant method to introduce dependence between a
geometric Brownian motion and a risk process. In this framework,
we find the main features of clocks: means, variances and their
joint moment generating function (mgf).

Secondly, we show that the linear dependence between log-
prices and claims is proportional to the risk premium of stocks
and to the insurer’s average profit. In particular, when the insurer
does not charge any fee above the pure premium, the correlation
is null despite an evident dependence by construction. When the
insurer’s margin is positive, the linear correlation is induced by
incomes from the insurance activity, reinvested in the financial
market. From an economic point of view, the linear dependence
between insurance and financial markets in a time-changedmodel
find its origin in the existence of a risk premium in both segments.

Thirdly, we prove that the insurer’s ruin probability is still
below the Cramer–Lundberg bound, if the surplus is not invested in
the stocksmarket. Fourthly, we determine the optimal investment,
reinsurance and dividend policies that maximize the exponential
utility drawn from dividends and terminal surplus. Surprisingly,
Optimal reinsurance and investment strategies are independent
from markets clocks. Whereas, the optimal dividend is a linear
function of the wealth and of intensities of chronometers. Finally,
we compare with optimal strategies when the claim process is
approached by a Brownian motion.

2. Stochastic clocks of financial and insurance markets

Papers of Ané and Geman (2000) and Salmon and Tham (2007)
provide pieces of evidence that the time scale of financial markets
is not chronological but rather driven by traded volumes. Starting
from this observation, we respectively model financial returns
and insurance claims by a Brownian motion and a jump process,
observed on distinct random scales of time. This approach allows
us to replicate clustering of shocks observed in financial and
in insurance markets. It also introduces contagion and random
correlation between assets and liabilities. The chronometers
measuring the time scales of financial and insurance markets are
respectively denoted by τ S

t and τ L
t . They are positive increasing

processes defined as the integrals of two processes
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processes with random jumps JSk and JLk . The intensities of jump
arrivals are assumed equal to the frequencies of information flows:
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For the sake of simplicity, jumps are exponential random

variables with densities νS(z) = ρSe−ρS z1{z≥0} and νL(z) =
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the moment generating functions of jumps are respectively
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These processes revert respectively at speeds αS and αL toward θS
or θL. The parameters ηLS, ηSS, ηSL, ηLL are constant and positive.
This last relation underlines the main features of our approach:
contagion, mutual and self-excitation. Indeed, when the clock of
the financial (resp. insurance) market speeds up due to a jump
of Z S

t (resp. Z L
t ), the chronometer of the insurance (resp. financial)

market accelerates proportionally. This also raises the volatility as
longer periods, measured on the market time scale, are observed
on the same invariable chronological time scale. Another conse-
quence of a jump is an instantaneous increase in the probability of
observing a new financial or actuarial shock as λS

t and λL
t are the

intensities of point processes Z S
t and Z L

t . We check by direct differ-
entiation that intensities are the sum of a deterministic function
and of two jump processes,
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These expressions are useful to find closed form expressions of ex-
pected intensities, fromwhichwewill infer the conditions guaran-
teeing the stability of jump processes.

Proposition 2.1. The expectations of λS
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