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a b s t r a c t

We consider two nonparametric estimators for the risk measure of the sum of n i.i.d. individual insurance
risks divided by n, where the number of historical single claims that are used for the statistical estimation
is of order n. This frameworkmatches the situation that nonlife insurance companies are facedwithwithin
the scope of premium calculation. Indeed, the risk measure of the collective risk divided by n can be seen
as a suitable premium for each of the individual risks. For both estimators asymptotic normality has been
obtained recently. Here we derive almost sure bootstrap consistency for both estimators, where we allow
for theweighted exchangeable bootstrap and rather general law-invariant riskmeasures. Both estimators
are subject to a relevant negative bias for small tomoderate n. For one of themwe investigate bymeans of
numerical experiments the benefit of a bootstrap-based bias correction. The numerical experiments are
performed for the Value at Risk and the Average Value at Risk, and the results are comparable to those
of Kim and Hardy (2007) who did analogous experiments for classical nonparametric plug-in estimators.
For the other estimator the benefit of a bootstrap-based bias correction can be ruled out by theoretical
arguments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let (Xi) be a sequence of nonnegative i.i.d. random variables on
a common probability space with distribution µ. In the context
of actuarial theory, the random variable Sn :=

∑n
i=1Xi can be

seen as the total claim of a homogeneous insurance collective
consisting of n risks. This corresponds to the individual risk model,
and one should therefore assume that µ has large point mass at
0. The distribution of Sn is given by the n-fold convolution µ∗n

of µ. A central task in insurance practice is the specification of
the premium Rρ(µ∗n) for the collective risk Sn, where Rρ is the
statistical functional associated with any suitable law-invariant
risk measure ρ. Note that

Rn :=
1
n
Rρ(µ∗n) (1)

can be seen as a suitable premium for each of the individual risks
X1, . . . , Xn, where it is important to note that most often 1

nRρ(µ∗n)
is essentially smaller than Rρ(µ).

In Krätschmer and Zähle (2011) and Lauer and Zähle (2015) the
nonparametric estimators

NAR̂n :=
1
n
Rρ(Nnm̂un ,n̂s2un

) and CER̂n :=
1
n
Rρ(µ̂∗nun ) (2)
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for the individual premiumRn based on observed historical single
claims Y1, . . . , Yun were studied, where the Yi are assumed to be
i.i.d. random variables on some probability space (Ω,F,P) with
distribution µ. In (2) and in the rest of the paper, we use m̂un , ŝ

2
un ,

and µ̂∗nun to denote the empirical mean 1
un

∑un
i=1Yi, the empirical

variance 1
un

∑un
i=1(Yi − m̂un )

2, and the n-fold convolution of the
empirical probability measure µ̂un :=

1
un

∑un
i=1δYi of the observed

historical single claims, respectively. Recall that m̂un , ŝ
2
un , and µ̂un

are the standard nonparametric estimators for the mean m of µ,
the variance s2 of µ, and µ itself, respectively. Moreover Nm,s2

stands for the normal distribution with mean m and variance
s2. The former estimator in (2) is motivated by the central limit
theorem, and the latter one by the Glivenko–Cantelli theorem. For
computational aspects of the latter estimator in (2) see Lauer and
Zähle (2015), Appendix A.

On the one hand, it was shown in Krätschmer and Zähle (2011)
and Lauer and Zähle (2015) that for many risk measures ρ and
under

lim
n→∞

un/n = c for some constant c ∈ (0,∞) (3)

and somemild assumptions onµ the estimators in (2) are strongly
consistent in the sense that
NAR̂n −Rn −→ 0 P-a.s. and
CER̂n −Rn −→ 0 P-a.s.

(4)
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and asymptotically normal in the sense that

P ◦
{√

un(NAR̂n −Rn)
}−1 w
−→ N0,s2 and

P ◦
{√

un(CER̂n −Rn)
}−1 w
−→ N0,s2 .

(5)

Here and in the rest of the paper
w
−→ refers to weak conver-

gence. Condition (3) is motivated by the fact that the premium
is typically estimated on the basis of the historical claims of the
same collective from the last year or from the last few years.
Note that this condition is somehow nonstandard, because in the
literature on asymptotic statistical inference for convolutions it
is usually assumed that the number of summands n is fixed and
the number of observations u tends to infinity; see, for instance,
Pitts (1994).

On the other hand, in Lauer and Zähle (2015) it was demon-
strated bymeans ofMonte Carlo simulations that the estimators in
(2) are subject to a negative bias for finite sample size n. In particu-
larwhen the conditional single claim distributionµ>0[ · ] := µ[ · ∩

(0,∞)]/µ[(0,∞)] is ‘‘heavy-tailed’’ the bias can be considerable.
A conventional method for correcting the bias of an estimator is
based on ‘‘the’’ bootstrap. We will recall the fundamental idea of
this method in Section 2. For background see also Section 10.6
in Efron and Tibshirani (1994).

In the paper at hand, we address the question whether the
biases of the estimators NAR̂n and CER̂n for the individual premium
Rn can be reduced by means of the bootstrap technique to be ex-
plained in Section 2. For the estimatorRρ(µ̂n) ofRρ(µ) analogous
investigations have been done by Kim and Hardy (2007) for the
Value at Risk and the Average Value at Risk, and by Kim (2010)
for more general distortion risk measures. Ahn and Shyamalkumar
(2010) provided some asymptotic analysis for the Average Value
at Risk in this context. Part (iii) of Remark 3.3 indicates that the
bootstrap approach for reducing the bias is not expedient for the
estimator NAR̂n. On the other hand, the bootstrap approach can be
(slightly) useful for CER̂n. In our numerical examples for CER̂n with
ρ the Value at Risk and the Average Value at Risk (see Section 4),we
obtain results that are qualitatively comparable to the numerical
results of Kim and Hardy (2007) and Kim (2010). Whereas for
the Value at Risk an application of the bootstrap-based method of
Section 2 seems not useful, for the Average Value at Risk we can
observe that on average a small to moderate reduction of the bias
goes along with a small increase of the variance (and of the mean
squared error).

In the framework of Ahn and Shyamalkumar (2010), Kim and
Hardy (2007) and Kim (2010) the plug-in estimator Rρ(µ̂n) for a
distortion risk measure Rρ(µ) is an L-statistic, and thus bootstrap
consistency is known from the literature. According to Gribkova
(2016), Theorem 7 of Gribkova (2002) applies, at least for dis-
tortion functions that are piecewise differentiable with Hölder
continuous derivative. For the Average Value at Risk functional,
see also Corollary 4.2 in Beutner and Zähle (2016). Moreover, for
L-statistics even the exact bootstrapmean can be calculated explic-
itly (Hutson and Ernst, 2000). In our setting, where the individual
premium Rn = Rρ(µ∗n)/n is estimated by CER̂n, bootstrap results
seem not to exist so far (up to the best of our knowledge). For this
reasonwewill derive in Section 3 a result on bootstrap consistency
for this estimator to give a mathematical justification for the use
of the bootstrap-based method of Section 2. Theorem 3.2 is the
theoretical contribution of our article. Its proof will be carried out
in Section 5. Although the method of Section 2 seems not to be
appropriate for the estimator NAR̂n (see part (iii) of Remark 3.3),
in Theorem 3.2 we also establish bootstrap consistency for this es-
timator. In Section 4 we will present the results of some numerical
experiments.

2. Bootstrap-based bias correction

As mentioned in the Section 1 the estimators defined in (2)
have a negative bias w.r.t. Rn. As a countermeasure one can try
to ‘‘estimate’’ the bias and subtract it from the original estimator.
The ‘‘estimation’’ of the bias can sometimes be done by means of
bootstrap methods. The idea of the bootstrap was introduced by
Efron in 1979 in his seminal paper (Efron, 1979). Since then many
variants of the bootstrap have been discussed in the literature;
for background and details one may refer to Davison and Hinkley
(1997), Efron and Tibshirani (1994), Lahiri (2003) and Shao and Tu
(1995) among others.

To explain the bootstrap-based method for correcting the bias
more precisely, let R̂n be an estimator for a real-valued character-
isticRn, n ∈ N, whereRn may or may not be defined by (1). In any
case assume that R̂n is given by a statistical functional evaluated
at a (random) probability measure which is uniquely determined
by observed data Y1, . . . , Yun , where the latter are given by the first
un terms of a sequence (Yi) of i.i.d. random variables defined on a
probability space (Ω,F,P). For illustrations of such estimators see
(2). Assume that R̂n is biased, i.e. that

Bias(R̂n) := E[R̂n −Rn] (6)

differs from 0 for finite sample size n. Further assume that

P ◦
{√

un(R̂n −Rn)
}−1 w
−→ N0,s2 (7)

holds for some s2 ∈ (0,∞). See (5) for an illustration of condi-
tion (7). Now extend the original probability space (Ω,F,P) to
the product (Ω,F,P) := (Ω × Ω ′,F ⊗ F ′,P ⊗ P′) with any
other probability space (Ω ′,F ′,P′), and assume that the result ω′

of (Ω ′,F ′,P′) and the original sample Y1(ω), . . . , Yun (ω) specify a
new (random) probability measure. The latter is plugged in the
underlying statistical functional to obtain a ‘‘bootstrap version’’ of
R̂n, denoted by R̂B

n . Note that R̂B
n depends on ω and ω′, that is, it

is defined on the probability space (Ω,F,P). Also note that, up
to some measurability issues, the mapping ω′ ↦→ R̂B

n(ω, ω′) can
be seen as a random variable on (Ω ′,F ′,P′) for any fixed ω. For
illustrations of R̂B

n see (12) and (14). In fact R̂B
n should be called

(almost sure) bootstrap version of R̂n only if

P′ ◦
{√

un
(
R̂B

n(ω, · )− R̂n(ω)
)}−1 w
−→ N0,s2 P-a.e. ω. (8)

The left-hand side of (8) is often referred to as the conditional
distribution of

√
un(R̂B

n−R̂n) given the observation Y1, . . . , Yun . For
a justification of this interpretation see, for instance, the discussion
at the end of Section 2 in Beutner and Zähle (submitted for
publication).

Whenever (7) and (8) can be shown, we have

P ◦
{
R̂n −Rn

}−1
≈ N0,s2/un

and

P′ ◦
{
R̂B

n(ω, · )− R̂n(ω)
}−1
≈ N0,s2/un P-a.e. ω

for ‘‘large’’ n. That is, informally,

P ◦
{
R̂n −Rn

}−1
≈ P′ ◦

{
R̂B

n(ω, · )− R̂n(ω)
}−1 P-a.e. ω (9)

for ‘‘large’’ n. Sometimes it turns out that the two laws in (9) are not
only ‘‘close’’ but even have a similar skewness so that the means
of these two laws are close to each other. In this case the mean of
the law on the right-hand side of (9) is a reasonable approximation
of Bias(R̂n) defined in (6). Though the law on the right-hand side
of (9) can be seldom specified explicitly, it can be numerically
approximated through

1
L

L∑
ℓ=1

δR̂B,ℓ
n (ω, · )−R̂n(ω) with L≫ n
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