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a b s t r a c t

This paper develops a stochastic dominance rule for the reference-dependent utility theory proposed by
Kőszegi andRabin (2007). The newordering captures the effects of loss aversion and can be used as a semi-
parametric approach in the comparison of risks with reference points. It is analytically amenable and
possesses a variety of intuitively appealing properties, including the abilities to identify both ‘‘increase
in risk’’ and ‘‘increase in downside risk’’, to resolve the Allais-type anomalies, to capture the violation
of translational invariance and scaling invariance, and to accommodate the endowment effect for risk.
The generalization to third-order dominance reveals that loss aversion can either reinforce or weaken
prudence, depending on the location of the reference point. Potential applications of the new ordering in
financial contexts are briefly discussed.

© 2016 Published by Elsevier B.V.

1. Introduction

Reference points such as benchmarks or targets manifest
themselves pervasively in portfolio management. Regardless of
being individual or institutional, investors commonly have a
benchmark to follow or a target to beat. Reference points usually
exert substantial influence on investors’ risk appetites, which
further motivate their strategies (Dittmann et al., 2010).

In the financial literature, the evaluation of risks with reference
points is often performed using risk measures such as fixed-
target lower-partial moments, downside betas, Value-at-Risk and
ExpectedShortfall.1 These measures are designed primarily on the
basis of computational considerations and lack a choice-theoretic
foundation. As response to this shortcoming, the literature has
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1 Lower-partial moment models were first introduced by Markowitz (1959).

Fishburn (1977) and Price et al. (1982) further developed more general forms of
downside risk measures based on fixed-target lower-partial moments. Downside
betas were first advocated by Bawa and Lindenberg (1977) and have been adopted
by many authors such as Ang et al. (2006). Value-at-Risk and Expected Shortfall
are rooted in the safety-first criterion proposed by Roy (1952) and use a reference
percentile.

suggested a non-parametric approach for evaluating risks based
on stochastic dominance rules. These rules are rooted in utility
theory and rank prospects with minimal assumptions about
investors’ risk attitudes (Levy, 1992). However, to the best of our
knowledge, with few exceptions (Baucells and Heukamp, 2006),
researchers have not yet developed stochastic dominance rules
that are suited for comparing risks with explicit reference points.
The behavioral stochastic dominance rules such as ‘‘prospect
stochastic dominance’’ and ‘‘Markowitz stochastic dominance’’
studied previously mainly focus on exploring the concavity and
convexity of the value function, and thereby cannot provide
guidance on how to properly mitigate downside risk.

This paper represents a first effort to tailor a stochastic
dominance rule suited for comparing riskswith reference points. In
modeling agents’ preferences with reference points, the reference-
dependent utility theory developed by Kőszegi and Rabin (2006,
2007) is a popular candidate. To invoke this theory, one needs a von
Neumann–Morgenstern utility function to describe the intrinsic
taste for outcomes, a parameter to capture the magnitude of loss
aversion, and a parameter to measure the weight of gain–loss
utility. In this paper, we develop a stochastic dominance rule
for Kőszegi and Rabin’s theory to reduce the parametrization. To
invoke our stochastic dominance rule, one does not need to know
exactly the formof the vonNeumann–Morgenstern utility function
or the values of the two parameters. What is needed is just a

http://dx.doi.org/10.1016/j.insmatheco.2016.05.003
0167-6687/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.insmatheco.2016.05.003
http://www.elsevier.com/locate/ime
http://www.elsevier.com/locate/ime
http://crossmark.crossref.org/dialog/?doi=10.1016/j.insmatheco.2016.05.003&domain=pdf
mailto:dmguo@amss.ac.cn
mailto:huyi@ucas.ac.cn
mailto:sywang@amss.ac.cn
mailto:zhaolin@iss.ac.cn
http://dx.doi.org/10.1016/j.insmatheco.2016.05.003


106 D. Guo et al. / Insurance: Mathematics and Economics 70 (2016) 105–116

Fig. 1. The inclusion relationship between SSDr̃ , SSD and TSD. The relationship
SSD ⊂ SSDr̃ (SSD ⊂ TSD) denotes that for any two random variables, w̃1SSDw̃2
implies w̃1SSDr̃ w̃2 (w̃1TSDw̃2), but the converse is not true. The relationship (SSDr̃

∩

TSD)\SSD ≠ ∅ states that there are pairs of random variables that cannot be ranked
by SSD but can be ranked by TSD and SSDr̃ in the same order.

judgment about whether the von Neumann–Morgenstern utility is
increasing or concave and whether the two parameters are bigger
than some pre-specified lower bounds. As we have to specify the
reference point and the lower bounds of the parameters in the
piecewise linear value function when employing our dominance
rule, we regard it as a semi-parametric approach for comparing
risks.

In developing the stochastic dominance rule, we follow Kőszegi
and Rabin (2006, 2007) to abstract from the S-shaped nature of
the value function by assuming a piecewise linear value function.
Piecewise linearity captures risk aversion over gains but precludes
risk-lovingness over losses, which is consistent with portfolio
mangers’ disaster avoidance motive, making our dominance rule
suitable for use in practice.2 We use three specifications of the
reference point: (i) exogenous and deterministic; (ii) exogenous
and stochastic; and (iii) endogenous (stochastic or not). Among
the them, (i) provides a basis where the intuitions underlying
our stochastic dominance rule will be elaborated. Most of our
discussion is confined to the second-order dominance, while a
generalization to higher orders will also be explored. Our new
dominance rule proves to be a convenient tool for analytically
characterizing the effects of reference point and loss aversion on
the risk-taking behavior. When the reference point is exogenous
(whether deterministic or stochastic), our new ordering exhibits
four features that distinguish it from the traditional dominance
rules.

First, compared with the traditional second-order stochastic
dominance (‘‘SSD’’, henceforth), the new ordering admitting a
reference point r̃ , denoted by SSDr̃ , shows higher aversion towards
the risk spread: in the SSDr̃ ordering, not only all mean-preserving
spreads are disliked, but also certain kinds of mean-increasing
spreads satisfying the condition specified in Proposition 4 will be
disliked. For a spread to be preferred according to SSDr̃ , the average
increase in return must be high enough to compensate for the
downside risk.

Second, the inclusion relationship between SSDr̃ , SSD and third-
order stochastic dominance (TSD) is found to satisfy Fig. 1. On the
one hand, SSDr̃ contains SSD as a sub-ordering and can rank certain
risk pairs in the same order as TSD does when risk pairs satisfy
the condition specified in Proposition 5. On the other hand, SSDr̃ is
definitely a newordering that is neither sufficient nor necessary for
TSD. Therefore, SSDr offers an effective complement to SSD and TSD
in identifying the ‘‘increase in risk’’ and the ‘‘increase in downside
risk’’ (‘‘more skewed to the left’’).

Third, since investors’ sense of loss is influenced by the location
and scale of the risk, SSDr̃ is not invariant under either translations
or nonnegative scaling of underlying risks. In particular, as we

2 Convexity for losses found in experiments is not very pronounced. See
Abdellaoui et al. (2005).

will see in Proposition 6, the original undominated component
can become dominated after an upward scaling of a pair of risks,
capturing that investors exhibit larger risk aversion in the face of
risks with larger scale.

Fourth, SSDr̃ offers an analytical characterization of the
endowment effect for risk. We show in Proposition 8 that the
investor can become less averse to the spread of risk when the
reference point becomes more dispersed. In other words, the
investor is less risk averse if she expects to face greater risks. This
effect was firstly formalized by Kőszegi and Rabin (2007) under the
assumption of linear intrinsic utility function (see their Proposition
1 on pg. 1053) and has found an experimental support in Sprenger
(2015). Our new ordering generalizes the analysis to arbitrary
concave utility functions.

Our stochastic dominance rule can easily accommodate en-
dogenous reference points. When reference points are endoge-
nously formed by expectations as in Kőszegi and Rabin (2006,
2007), we show in Proposition 9 that our ordering yields a new
resolution of the Allais-type anomalies that includes both the com-
mon consequence effect and the common ratio effect. The essence
of the resolution is that anticipating more risky lotteries drives in-
vestors to become less risk-averse bymaking their reference points
more dispersed.

Our stochastic dominance rule can also be generalized to
explore the effects of reference points on higher-order preferences.
Although the effects of reference points on the second-order
preference (risk aversion) are well studied, little is known on
how reference points change higher-order preferences. Maier and
Rüger (2012) find that if the reference point is endogenously
formed by expectations, individuals exhibit even- but never
uneven-order risk attitudes. Complementary to this result, our
third-order stochastic dominance rule provided in Proposition 10
shows that when the reference point is exogenous, loss aversion
can either reinforce or weaken prudence, depending on the
location of the reference point.

We contribute to the literature on risk theory by offering
a new method rooted in utility theory for comparing risks
with reference points. It establishes robust predictions based
on limited information about the utility function, and can be
used in experiments as a guide to design pairs of prospects to
examine theories with reference-dependence structure (Baucells
and Heukamp, 2006). It also adds to the literature on behavioral
portfolio (Shefrin and Statman, 2000; Berkelaar et al., 2004;
Jarrow and Zhao, 2006; De Giorgi and Post, 2011; He and Zhou,
2011) by providing a new approach in identifying downside risk.
Mathematically, SSDr̃ is a simple extension of that of SSD, as it just
introduces a stepwise weighting function to the integrand. This
makes the existing statistical approaches for testing SSD such as
Davidson and Duclos (2000) readily extendable for testing SSDr̃ .

The remainder of this paper is structured as follows. Sections 2
and 3 are devoted to the baseline case where the reference point
is non-stochastic and exogenous. We concentrate on second-order
preference in these two sections. Sections 4–6 are three important
extensions, generalizing the analysis to accommodate stochastic
reference points, endogenous reference points, and higher-order
preferences, respectively. Section 7 concludes this paper with a
discussion of potential applications. All proofs are relegated to
Appendix.

2. Definition and characterizations of SSDr

We begin with the baseline case where the reference point
is constant and exogenous, denoted by r . We use w̃ to denote a
random variable and w its realization. When the random variable
w̃ is discrete, we use

w̃ = (w1, p1; · · · ; wn, pn)
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