
Insurance: Mathematics and Economics 70 (2016) 125–134

Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Lifetime ruin under ambiguous hazard rate
Virginia R. Young ∗, Yuchong Zhang
Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA

a r t i c l e i n f o

Article history:
Received June 2015
Received in revised form
June 2016
Accepted 10 June 2016
Available online 22 June 2016

JEL classification:
C61
G02
G11

MSC:
primary 49L20
60H30
secondary 60G46
35Q93

Keywords:
Probability of lifetime ruin
Ambiguity aversion
Hazard rate uncertainty
Optimal control
Stochastic control

a b s t r a c t

We determine the optimal robust investment strategy of an individual who targets a given rate of
consumption andwho seeks tominimize the probability of lifetime ruinwhen her hazard rate ofmortality
is ambiguous. By using stochastic control, we characterize the value function as the unique classical
solution of an associated Hamilton–Jacobi–Bellman equation, obtain feedback forms for the optimal
strategies for investing in the risky asset and distorting the hazard rate, and determine their dependence
on various model parameters. We also include numerical examples to illustrate our results, as well as
perturbation analysis for small values of the parameter that measures one’s level of ambiguity aversion.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The problem of optimally investing to minimize the probabil-
ity of running out of money before one dies is an important one,
as introduced in Milevsky and Robinson (2000) and analyzed in
Young (2004). On a related note, Sid (Browne, 1997) studies a sim-
ilar survival and growth problem, but for an infinitely-lived agent.
The financial andmortalitymodels in Young (2004) andmost of the
subsequent work in minimizing the so-called probability of lifetime
ruin have been under the assumption that the models are known;
see Bayraktar and Zhang (2015) for references. However, in reality,
one does not know the underlyingmodelwith certainty; therefore,
we want to incorporate model ambiguity in minimizing the prob-
ability of lifetime ruin.

Bayraktar and Zhang (2015) allow for model ambiguity in the
drift of the risky asset; see their work for relevant references
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concerning robust control.1 In this paper, we allow for ambiguity
in the hazard rate that affects the individual’s mortality. As a rule,
individuals do not know the value of their hazard rate, although
they might be able to approximate their future life expectancy,
whose multiplicative inverse can provide a reference hazard rate
λ. More specifically, we analyze the robust lifetime ruin problem

inf
π

sup
Q


Q(τ0 < τd)−

1
ε

EQ

ln

dQ
dP


, (1.1)

in which τ0 and τd are the times of ruin and death, respectively, the
parameter ε specifies the strength of ambiguity aversion, π runs
through possible investment strategies, Q runs through a set of
possible measures representing hazard-rate uncertainty, and P is
the reference measure that incorporates the reference hazard rate
λ.2 Note that the individual’s belief about her time of death does

1 The mathematical techniques used in that paper are similar to what we use
here, but the results here are not trivial and are not comparable to those in Bayraktar
and Zhang (2015).
2 In writing (1.1), we assume that a certain stochastic integral has zero Q-

expectation; see Eqs. (2.2) and (2.3).
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not follow a true exponential distribution, but something close
to it, as measured by entropic distance. The effect of our model
ambiguity is illustrated in Section 6. For example, to better protect
herself from the risk of over-estimating the hazard rate, the agent
should invest more aggressively when she is poor.

One can think of the optimization problem in (1.1) as
minimizing the probability of lifetime ruin, as in Young (2004),
with a penalty for ambiguity concerning the hazard rate. Here, we
distinguish between ambiguity and stochasticity in thehazard rate.
In the latter case, the randomhazard rate has a known distribution,
whereas in the former case, the distribution is unknown. For a
literature review of stochastic mortality models, see, for example,
Dahl (2004) or Cairns et al. (2008). For tractability, we work with
a constant reference hazard rate. In future research, it would be
interesting to incorporate ambiguity aversion to time-dependent
or even stochasticmortalitymodels.We also plan to apply a similar
penalty to other goal-seeking problems, such as maximizing the
probability of reaching a bequest goal, as in Bayraktar and Young
(2015).

When ε → 0 and ε → ∞, we obtain explicit formulas for
the value function and corresponding optimal controls. For 0 <
ε < ∞, we characterize the value function as the unique classical
solution of an associated Hamilton–Jacobi–Bellman (HJB) equation
satisfying two boundary conditions, and give feedback forms for
the optimal strategies of investing in the risky asset and distorting
the hazard rate. For our analysis, we cite much of the work of
Bayraktar and Zhang (2015); therefore, we focus on the properties
of the resulting robust value function.

The rest of the paper is organized as follows. In Section 2, we
define the Black–Scholes financial market in which the individ-
ual invests and consumes. More importantly, in that section, we
develop the set Q of probability measures Q that model uncer-
tainty in the individual’s hazard rate; then, at the end,wedefine the
corresponding robust value function, a penalized minimum prob-
ability of lifetime ruin. In Section 3, we state our main theorem,
Theorem 3.1, which characterizes the robust value function as the
unique solution of the corresponding HJB equation with appropri-
ate boundary values. Theorem 3.1 also presents, in feedback form,
the optimal controls for investing in the risky asset and for dis-
torting the hazard rate. Then, in Section 4, we outline a proof of
Theorem 3.1 and provide details, as needed. This section also in-
cludes the interesting result that both the robust value function
and optimal investment in the risky asset increase as one’s ambi-
guity aversion increases. We discuss this property and prove other
properties of the robust value function and optimal controls in Sec-
tion 5. Finally, in Section 6, we provide some numerical examples
that illustrate our analytical results, andwe asymptotically expand
the robust value function for small values of ε, the parameter that
represents the investor’s level of ambiguity aversion.

2. Formulation

Let (Ω,F , F = (Ft)t≥0, P) be a filtered probability space
supporting a Brownian motion B = (Bt)t≥0 and an exponential
random variable τd that is independent of F and has rate λ.
τd models the death time of the individual. In this context, we
consider λ to be the reference hazard rate. The value of λ is
uncertain, and we model the individual’s ambiguity about it.

Let Dt := 1{τd≤t} be the death indicator process; D = (Dt)t≥0
jumps from 0 to 1 when the individual dies. Let G = (Gt)t≥0 be the
progressive enlargement of the filtration F to include information
generated by D, specifically, Gt = Ft ∨ σ(Du : 0 ≤ u ≤ t). Assume
F and G have been augmented to satisfy the usual condition of
completeness and right continuity. Under the reference measure
P, D has jump rate λ1{Dt=0}, andMP

t := Dt −
 t
0 λ1{Du=0}du forms a

(P,G)-martingale.

The financial market consists of a riskless bank account with
interest rate r > 0 and a risky asset whose price process S =

(St)t≥0 follows a geometric Brownian motion

dSt = µStdt + σ StdBt ,

with S0 > 0, µ > r , and σ > 0. Let πt be the dollar amount
that the individual invests in the risky asset at time t . We say
(πt)t≥0 is admissible if it is F-progressively measurable and sat-
isfies

 t
0 π

2
u du < ∞P-a.s. for all t ≥ 0. Denote by A the set of all

admissible investment strategies. Apart from investment, the indi-
vidual also consumes at a constant rate c > 0. Her wealth W ◦

t has
the following pre-death dynamics:

dW ◦

t =

rW ◦

t + (µ− r)πt − c

dt + σπtdBt , W ◦

0 = w. (2.1)

Define the time of ruin τ0 := inf{t ≥ 0 : W ◦
t ≤ 0} to be

the first time the individual’s wealth falls to or below zero. The
individual aims tominimize the probability that ruin occurs before
her death, that is, τ0 < τd, but she is concerned that the hazard
rate might be misspecified. So, instead of optimizing under the
reference measure P, she considers a set Q of candidate measures,
and penalizes a given measure’s deviation from P.

We assume the individual is only ambiguous about the
hazard rate, not the financial market (drift uncertainty is studied
in Bayraktar and Zhang (2015)). However, under alternative
measures, we allow the hazard rate to depend on the information
in the financial market. More precisely, a probability measure Q is
in Q if dQ/dP = L∞ = limt→∞ Lt , in which

Lt := E


·

0
(ϑu− − 1) dMP

u


t

= exp
 t

0
ln(ϑu−) dDu −

 t

0
λ1{Du=0}(ϑu − 1)du


,

for some F-progressively measurable, positive process ϑ =

(ϑt)t≥0. In other words, Lt is the solution of

dLt = Lt−(ϑt− − 1) dMP
t , L0 = 1.

(See page 59 of Jacod and Shiryaev, 2003 for the Doléans-Dade
exponential formula E .) Observe that Lt = Lt∧τd ; thus, L∞ exists.
To ensure that EP

[L∞] = 1, we only consider those ϑs under
which L = (Lt)t≥0 a uniformly integrable (P,G)-martingale. This
will be the case when ϑ is bounded away from zero and infinity.3
From Bielecki et al. (2009, Theorem 3.4.1), we know B is a (Q,G)-
Brownian motion and the Q-intensity of D is λϑt1{Dt=0}, that is,
MQ

t := Dt −
 t
0 λϑu1{Du=0} du forms a (Q,G)-martingale.

Use MQ to rewrite Lt as

Lt =exp
 t

0
ln(ϑu−) dMQ

u +

 t

0
λ1{Du=0}(ϑu lnϑu − ϑu + 1) du


.

The relative entropy of Q with respect to P is given by

EQ [ln L∞] = EQ


∞

0
ln(ϑu−) dMQ

u

+


∞

0
λ1{Du=0}(ϑu lnϑu − ϑu + 1) du


. (2.2)

By assuming the stochastic integral vanishes upon taking Q-
expectation, we have

EQ [ln L∞] = EQ


∞

0
λ1{Du=0}(ϑu lnϑu − ϑu + 1) du


. (2.3)

3 Indeed, if ϑ is bounded away from zero and infinity, then ∃δ > 0 such that
supτ EP

[L1+δτ ] < ∞, in which the supremum is taken over all finite G-stopping
times, which implies L is of class (D), thus, is a uniform integrable martingale.
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