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a b s t r a c t

We consider the optimal capital injection and dividend control problem for a class of growth restricted
diffusions with the possibility of bankruptcy. The surplus process of a company is modeled by a diffusion
process with return and volatility being functions of the surplus process. The company can control
the dividend payments and capital injections with the goal of maximizing the expectation of the total
discounted dividends minus the total cost of capital injections up to the time of bankruptcy. We
distinguish three cases and provide optimality results for each case.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The optimal dividend control problem has attracted significant
interest in the literature; see Albrecher and Thonhauser (2009),
Avanzi (2009), Schmidli (2008) and the references therein. Many
worksmodel the underlying surplus process by a Brownianmotion
with drift (see for example, Asmussen et al., 2000; Guo et al., 2004;
Yang et al., 2005; Cadenillas et al., 2006; He and Liang, 2009).
The dividend optimization problem formore general diffusions are
studied in Shreve et al. (1984), Højgaard and Taksar (2001), Bäuerle
(2004) and Alvarez and Virtanen (2006), Cadenillas et al. (2007),
Paulsen (2008), Zhu (2015) and references therein.

The dividend optimization problemwith the inclusion of capital
injectionswhich aims atmaximizing the expected total discounted
dividend payments minus the expected total discounted costs
of capital injections is studied in Shreve et al. (1984) and has
gained much interest in the recent literature. Shreve et al. (1984)
investigated this optimization problem (framed as a reflection
problem in the paper) for a general diffusion model subject to
the constraint that the surplus process remains non-negative all
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the times (guaranteed via capital injections whenever necessary
even though this may not be optimal in some situations). Løkka
and Zervos (2008), however, addressed the optimal dividend and
issuance of equity policies control problem with the possibility of
bankruptcy for a Brownian motion model. He and Liang (2008)
studied a similar problem with the addition of proportional
reinsurance policy for the Brownian motion model. Meng and Siu
(2011) applied the viscosity solution approach to studying the
optimal capital injection and dividend control problem for the
Brownian motion model where there are fixed and proportional
costs for each dividend payment. Sethi and Taksar (2002)
addressed the optimal dividend and financing control problem
for a more general diffusion model. However, the paper does not
taking into consideration of the possibility of bankruptcy (which
generally occurs when the surplus drops below a certain level, say
0) at all.

This paper studies the optimal capital injection and dividend
control for a class of growth restricted diffusion models with
the possibility of bankruptcy. As in Løkka and Zervos (2008), we
assume that the objective is to maximize the expected discounted
dividend payments minus the expected discounted costs of capital
injections up to the time of ruin, which is defined to be themoment
that the surplus process drops below 0 for the first time. Our
work can be considered as a generalization of the control problem
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in Løkka and Zervos (2008) in that both the drift and diffusion
coefficients of the diffusionmodel in our paper are functions of the
level of the surplus and therefore the model in our paper includes
the Brownianmotionmodel considered in Løkka and Zervos (2008)
as a special case. The major technical difficulty in our extended
model is caused by the fact that the ordinary differential equation
(ODE) involved in the associated Hamilton–Jacobi–Bellmen (HJB)
equation, unlike the constant coefficient ODE in Løkka and Zervos
(2008), has varying coefficients that are general functions (with
unspecified forms) of the variable. This means that we will not
be able to derive the explicit form of the solution, let alone to
obtain a simple exponential form that the solution in Løkka and
Zervos (2008) has. The explicit and especially exponential form in
Løkka and Zervos (2008) allows the authors to derive analytical
properties directly, which plays a crucial role in finding the final
optimal results.

We organize the rest of the paper as follows. In Section 2,
we provide the formulation of the optimization problem. In
Section 3, we study the functions that are solutions to the ordinary
differential equation involved in the associated HJB equation and
some functions constructed from these solutions. We distinguish
and analyze 3 cases, and present the optimality results for each
case in Section 4. We illustrate the results with two examples in
Section 5. Concluding remarks are provided in Section 6.

2. Problem formulation

Consider a probability space (Ω, F , P). Let {Wt; t ≥ 0} be
a standard Brownian motion and {Ft; t ≥ 0} be the minimal
complete σ -field generated by the stochastic process {Wt; t ≥ 0}.
Let Xt denote the cash flow surplus at time t of a company in
absence of capital injections and dividend payments. Assume that
the initial value of the surplus process, X0−, is F0 measurable, and
that Xt has the following dynamics

dXt = µ(Xt−)dt + σ(Xt−)dWt , t ≥ 0, (2.1)

where the functions µ(·) and σ(·) are Lipschitz continuous,
differentiable and grow at most linearly on [0, ∞). Let δ denote
the force of interest for the valuation of shareholders’ cash flows.
Furthermore,we assume that the functionσ(·) is positive and non-
vanishing, and µ′(x) < δ for x ≥ 0.

Remark 2.1. The diffusion under the constraint, µ′(x) < δ for
x ≥ 0, is general compared with most of the models used in the
literature of the dividend optimization problem with or without
the inclusion of capital injection control. In the literature, most of
the works used the drifted Brownian motion model (i.e., µ(·) =

a constant and σ(·) = a constant), a couple of papers considered
the Brownian model compounded by a constant force of interest
(i.e. µ(x) = p + rx with p ≥ 0 and r < δ, σ(x) = a constant)
and one paper investigated themean-reverting process (i.e.µ(·) =

c − rx; see Cadenillas et al., 2007). All these are special cases of the
growth restricted diffusions considered in this paper.

The company candistribute part of its assets to the shareholders
as dividends and the shareholders can reinvest (under no
obligation) via capital injections. There are transaction costs
associatedwith dividend payments and capital injections. For each
dollar of reinvestment, it includes c(c > 0) dollars of transaction
cost and hence leads to an increase of 1 − c dollars in the surplus
through capital injections. Let Ct denote the cumulative amount
of capital injections up to time t . Then the total cost for capital
injections up to time t is Ct

1−c . For each dollar of dividends received
by the shareholders, there will be d(d > 0) dollars of transaction
cost. Let Dt denote the cumulative amount of dividends paid out
by the company up to time t . Then the total amount of dividends

received by the shareholders up to time t is Dt
1+d . Both {Ct; t ≥ 0}

and {Dt; t ≥ 0} are controllable by the company. We call π :=

{(Ct ,Dt); t ≥ 0} a control strategy.
The dynamics of the controlled surplus process (by the strategy

π ) is

dXπ
t = µ(Xπ

t−)dt + σ(Xπ
t−)dWt − dDt + dCt , t ≥ 0. (2.2)

Definition 2.1. A strategy π = {(Ct ,Dt); t ≥ 0} is said to be
admissible if (i) both {Ct; t ≥ 0} and {Dt; t ≥ 0} are nonnegative,
increasing, càdlàg, and {Ft; t ≥ 0}-adapted processes, (ii) C0− =

D0− = 0, and (iii) ∆Dt ≤ Xπ
t .

We use Π to denote the class of admissible strategies.

Define the time to bankruptcy by

Tπ
= inf{t ≥ 0 : Xπ

t < 0}.

Note that bankruptcy may never occur under some strategies. For
example, if a company injects enough capitalwhenever the surplus
process is about to drop below 0 to keep the surplus process at or
above 0, bankruptcy never occurs. We define Tπ

= +∞ in this
case.

Define

Px ( · ) = P ( · |X0− = x) , Ex [ · ] = E [ · |X0− = x] .

The performance of a control strategy π is measured by the
return function defined as follows:

Rπ (x) = Ex

 Tπ

0−

e−δt

1 + d
dDt −

 Tπ

0−

e−δt

1 − c
dCt


, x ≥ 0. (2.3)

Remark 2.2. (i) From the above definition, we can see that the
class of admissible strategies,Π , includes admissible strategies
under which no capitals will be injected at all and strategies
that inject capitals before the surplus falls below 0 so that
bankruptcy will never occur. For example, the strategy that
prescribes to inject no capitals at all and to pay out the
excess of surplus over a pre-specified non-negative number as
dividends is an admissible strategy. Under such strategy, the
controlled surplus will fall below 0 eventually and therefore
the bankruptcy time is finite. Another special admissible
strategy is to distribute all the available surplus as dividends
at time 0 and inject no capitals at all. In this case, bankruptcy
occurs immediately at time 0, and the associated return
function is x

1+d .
(ii) We can see that in our paper the company is not compelled

to inject capitals at any time, unlike in Kulenko and Schmidli
(2008) where the controlled surplus is never allowed to
be negative, which is guaranteed via compulsory capital
injections.

For convenience, we use X and Xπ to denote the stochastic
processes {Xt; t ≥ 0} and {Xπ

t ; t ≥ 0}, respectively. We can see
that for any admissible strategy π , the stochastic process Xπ is
right-continuous and adapted to the filtration {Ft; t ≥ 0}.

The objective of this paper is to study the maximal return
function (also called value function):

V (x) = sup
π∈Π

Rπ (x), x ≥ 0, (2.4)

investigate the existence of optimal strategies and identify an
optimal admissible strategy, if any.
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