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a b s t r a c t

The main driver of longevity risk is uncertainty in old-age mortality, especially surrounding potential
dependence structures. We investigate a multivariate Pareto distribution that allows for the exploration
of a variety of applications, from portfolios of standard annuities to joint-life annuity products for
couples. Given the anticipated continued increase of supercentenarians, the heavy-tailed nature of the
Pareto distribution is appropriate for this application. In past work, it has been shown that even a little
dependence between lives can lead to much higher uncertainty. Therefore, the ability to assess and
incorporate the appropriate dependence structure,whilst allowing for extreme observations, significantly
improves the pricing and risk management of life-benefit products.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of lifetime dependence is highly important in actuar-
ial science. A positive pattern of dependencemay range from expo-
sure to similar risk-factors among a small group of individuals (say,
a couple) all the way to systematic mortality improvements expe-
rienced by a population, and hence, the link with longevity risk is
noteworthy. Rather thanmodelling mortality rates, we investigate
the lifetime (age at death) distribution directly. We consider a pool
of lives where the individual lifetimes follow a type II Pareto dis-
tribution, also known as the Lomax distribution, see Lomax (1954).
The dependence among the lives is determined by the nature of the
multivariate distribution. We consider a multivariate construction
of the type II Pareto distribution such that the correlation between
lives is governed by the Pareto shape parameter α. This particu-
lar construction of themultivariate distribution is analytically con-
venient, allowing us to derive closed-form expressions for various
quantities of interest. However, the parameter α is responsible for
both the shape of the marginal distribution as well as the depen-
dence structure, which imposes some restrictions on the model.

The nature of the problem is determined by the size of the
pool under consideration. For example, for a pool of size two, an
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application of this model is useful to assess the pricing and risk
management of joint-life annuity products, an extremely relevant
subset of insurance products. In fact, pools of arbitrary size could be
investigated so long as each pool contains roughly the same num-
ber of individuals. This restrictionmaymake practical applications
difficult for large n, but we hope, still of interest to both private
insurance and public policy. We believe the ability to investigate
joint-life behaviour is sufficient to justify the exploration of this
unique dependence structure.

In the work of Alai et al. (2013, 2015, 2016), lifetime
dependence modelling was considered for members of the expo-
nential dispersion family, specifically for the Tweedie subclass. De-
pendencewas induced via a common stochastic component, rather
than governed parametrically. Lifetime dependence has also been
studied in Denuit et al. (2001) and Denuit (2008) and within the
mortality rate modelling framework in Dhaene and Denuit (2007)
and D’Amato et al. (2012).

The Pareto distribution represents an interesting and relevant
distribution for modelling heavy-tailed data; for more about
Pareto distributions, see Arnold (1985) and for the modelling of
extreme events in insurance, Embrechts et al. (1997). The Pareto
is applied here to address the non-standard pattern of old-age
mortality; see e.g. Pitacco et al. (2009). The issues surrounding
old-age mortality are long-standing. With respect to the survival
curve, both compression and expansion have been postulated and
observed to varying degrees; see e.g. Myers and Manton (1984)
and Fries (1980) as well as Olivieri (2001) and Pitacco (2004). It
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is not our aim to make claims on old-age mortality, but to provide
a framework in which the matter may be further investigated.

Since the focus is on old-age mortality, lifetimes are necessarily
left-truncated. This represents a non-trivial issue with respect to
parameter calibration; one that we investigate on multiple fronts.
Not only arewe able to derive important characteristics of themul-
tivariate distribution, but we are also able to derive distributional
results on survivorship. The former is critical to model calibration
and the latter to the pricing and risk management of multi-life in-
surance products.
Organization of the paper: In Section 2 we introduce basic
notation and provide relevant results for the univariate Pareto
distribution. The multivariate Pareto distribution is introduced
in Section 3, where we derive results necessary to formulate
parameter estimators. In Section 4 we outline various parameter
estimation techniques, which we test via numerical analysis in
Section 5. In Section 6 we apply the model to price a bulk annuity
and contrast our results against the assumption of independent
lifetimes. Section 7 concludes the paper.

2. Notation and the type II Pareto distribution

In the following two sections, we derive some relevant prop-
erties of the truncated Pareto distribution; first, for the univariate
case, followed by a multivariate version. The results are required
to develop the parameter estimation procedures of Section 4.

2.1. Notation

Webegin by providing somenotation concerningmoments.We
denote with αk(X) and µk(X) the kth, k ∈ Z+, raw and central
(theoretical) moments of random variable X , respectively.

αk(X) = E[Xk
],

µk(X) = E[(X − α1(X))k].

The raw sample moments for random sample X = (X1, . . . , Xn)
′

are given by

ak(X) =
1
n

n
i=1

Xk
i , k ∈ Z+.

Finally, adjusted second central sample moments are denoted

m2(X) =
1

n − 1

n
i=1

(Xi − a1(X))2.

Note that the adjusted central sample moment of an independent
and identically distributed sample is an unbiased and consistent
estimator of the corresponding central moment of X1.

2.2. The type II Pareto distribution

We consider the type II Pareto distributionwith shape and scale
parameters α and σ > 0, respectively. The density function is
given by

f (y) =
α

σ


1 +

y
σ

−(α+1)
, y > 0.

The survival function is given by

F(y) =


1 +

y
σ

−α

, y > 0.

The raw moments of interest are given by

α1(Y ) =
σ

α − 1
, α > 1,

α2(Y ) =
2σ 2

(α − 1)(α − 2)
, α > 2

or, generally, for k ∈ Z+ and α > k,

αk(Y ) = Γ (k + 1)σ kΓ (α − k)
Γ (α)

.

The variance is given by

µ2(Y ) =
σ 2α

(α − 1)2(α − 2)
, α > 2.

2.3. Mean and variance for the truncated Pareto

Theorem 1. Consider Y distributed type II Pareto (α, σ ). Define the
associated truncated random variable τY = Y |Y > τ . The mean and
variance of τY are given by

α1(τY ) =
σ + τα

α − 1
,

µ2(τY ) =
(σ + τ)2α

(α − 1)2(α − 2)
.

Proof. F(y;α) denotes the survival function of a type II Pareto
distribution with shape parameter α.

α1(τY ) =
α

F(τ )


∞

τ

y
σ

1 +
y
σ

α+1 dy.

Applying partial fractions produces

α1(τY ) =
α

F(τ )


∞

τ


1

1 +
y
σ

α −
1

1 +
y
σ

α+1


dy

=
α

F(τ )

σ

α − 1


∞

τ

α−1
σ

1 +
y
σ

α dy
−

σ

F(τ )


∞

τ

α
σ

1 +
y
σ

α+1 dy

=
α

F(τ )

σ

α − 1
F(τ ;α − 1)−

σ

F(τ )
F(τ ;α)

=
σα

α − 1
F(τ ;α − 1)

F(τ )
− σ =

σα

α − 1


1 +

τ

σ


−
α − 1
α − 1

σ

=
σ + τα

α − 1
.

α2(τY ) =
α

F(τ )
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1 +
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σα
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σ
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α dy
+

σ 2
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