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a b s t r a c t

In this paper, we consider the long time behavior of Cox–Ingersoll–Ross (CIR) interest rate model with
Markov switching. Using the ergodic theory of switching diffusions, we show that CIRmodel withMarkov
switching has a unique stationary distribution. Furthermore, we prove that the sequence X t :=

1
t

 t
0 Xsds

converges almost surely. As a by-product, we find that the marginal stationary distribution for CIR model
with Markov switching can be determined uniquely by its moments.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An interest rate is the rate atwhich interest is paid by borrowers
for the use ofmoney that they borrow from lenders. To characterize
the interest rate, many mathematical models are proposed to
characterize the short-term borrowing. If the interest rate is
determined by only one stochastic differential equation, themodel
is called one-factor model. Cox et al. (1985) assume that the
evolution of the interest rate is given by

dXt = (δ − βXt)dt + σ

XtdWt , (1.1)

where δ, β , σ are positive constants, Wt is a standard (one-
dimensional) Brownian motion. The SDE defined by (1.1) is said
to be CIR model. It is well known that the CIR model (1.1) is
nonnegative and has some empirically relevant properties. In this
model, the interest rate Xt has a unique stationary (steady state)
distribution, which follows a gamma distribution, denoted by
Γ ( 2δ

σ 2 ,
2β
σ 2 ). The rate displays themean reversion towards the long-

term constant δ
β

(the mean of stationary distribution, denoted
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by EX∞). The CIR model has been widely used in finance and
insurance.

However, as a one factor model, the primary shortcoming is
that it cannot capture complicated the yield curve behavior; It
tends to produce parallel shifts in the yield curve, but not changes
in its slope or curvature. To better overcome the shortcoming
and capture the empirical data, Longstaff and Schwartz (1992)
proposes a two-factor interest rate model, which is assumed that
drift coefficients and diffusion coefficients are determined by two
CIR-type stochastic differential equations. Chen proposes a three-
factor interest rate model. Deelstra and Delbaen (1995) extend CIR
model (1.1) to the following stochastic differential equation (SDE)

dXt = (2βXt + δt)dt + g(Xt)dWt , (1.2)
where δt(ω) is a positive continuous adapted process, and g : R →

R+ is a function, vanishing at zero and such that there is a constant
b with |g(x) − g(y)| ≤ b

√
|x − y|. Under some assumptions, they

show that 1
t

 t
0 Xsds tends to a constant. Zhao (2009) considers

the long-term behavior of the model (1.2) with compound Poisson
jumps. Bao and Yuan (2013) study the long time behavior of the
model (1.2) with delay and compound Poisson jumps.

However, empirical research has indicated that diffusion
processes with Markov switching can better capture the reality
data. For example, Ball and Torous (1999) argue that short term
interest rates should be characterized by a nonlinear regime-
shiftingmodel to account for a change in economic regime brought
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about by factors such as Federal Reserve experiment in the early
1980s and OPEC oil crises in the late 1970s. Smith (2002) finds
that diffusion with Markov switching model is more reasonable
to model the monthly rate treasury bill of USA from June 1964 to
December 1996.

In this paper, we consider an interest rate model satisfying the
following stochastic differential equation (SDE)

dXt = (2β(rt)Xt + δ(rt))dt + g(Xt , rt)dWt (1.3)

with β(i) < 0, i ∈ S, and rt is a Markov chain. We call model (1.3)
the CIR model with Markov switching. Here g : R × S → R+

such that there is a constant bwith |g(x, i) − g(y, j)| ≤ b
√

|x − y|.
Besides, g(0, i) ≡ 0, for any i ∈ S.

Although there is an extensive literature on quantitative and
qualitative properties of the generalized CIR models, to the best
of the authors knowledge, there are few papers discussing the
theoretical properties of CIR model (1.3). The main purpose of this
paper is to investigate the long time behavior of the CIR model
(1.3).We show that themodel has a unique stationary distribution.
Moreover, we prove that the sequence X t :=

1
t

 t
0 Xsds converges

almost surely. Besides, we show that the marginal stationary
distribution of CIR model (1.3) can be determined uniquely by its
moments.

2. Notation

Throughout this paper, we let (Ω, F, {Ft}t≥0, P) be a complete
probability space with the filtration {Ft}t≥0 satisfying the usual
conditions (i.e. it is right continuous and increasing while F0
contains all P-null sets). Let Wt be a Brownian motion and rt be
a Markov chain taking the state space S = {1, . . . ,m0} with
generator Γ = (γij)m0×m0 given by

P{rt = j|r0 = i} =


γijt + o(t) if i ≠ j

1 + γiit + o(t) if i = j. (2.1)

Here the γij represents the transition rate from i to j, and γij > 0 if
i ≠ j, while

γii = −


i≠j

γij. (2.2)

In addition, we assume thatm0 is a finite natural number. Note that
the assumptions (2.1), (2.2) and γij > 0 for i ≠ j, i, j ∈ S imply that
the Markov chain rt is irreducible. Besides, it is not hard to see that
rt with finite state S is ergodic. Let πi := limt→+∞ P(rt = i|r0 =

j), i ∈ S. Ifm0 = 2, then

πi =

1
γii

m0
j=1

1
γjj

.

Throughout this paper, the following notation is frequently
used.

K : denoting a generic positive constant whose values may vary
at its different appearances.
R≥0: [0, +∞), i.e. all nonnegative real numbers.
N+: standing for all positive integers.
X x,i
t : standing for the interest rate process Xt with initial value

X0 = x, r0 = i.

For any bounded open interval (or bounded left closed right
open interval) D ⊂ R≥0, i ∈ S, let

τD = inf{t : X x,i
t ∈ D}.

If for any x ∈ Dc
:= R≥0 − D, EτD < +∞, then the process X x,i

t is
said to be positive recurrent with respect to D. If the process X x,i

t is

positive recurrent relative to any bounded open set D ⊂ R≥0, then
the process X x,i

t is positive recurrent.
To guarantee that there exists a unique nonnegative solution,

we impose the following assumptions (A):

(A1) δ(i) > 0, β(i) < 0, i ∈ S;
(A2) g(x, i) is a nonnegative function with the following proper-

ties:
(1) g(0, i) = 0, i ∈ S;
(2) There is a constant K such that for all x, y ∈ R+, i ∈ S,

|g(x, i) − g(y, i)| ≤ K
√

|x − y|.

Let ∆ij be consecutive (with respect to the lexicographic
ordering on S × S), left closed, right open intervals of the real line,
each having length γij (see, e.g., pp. 46–48, Mao and Yuan (2006)).

Define a function

h(i, y) =


j − i y ∈ ∆ij
0 otherwise.

The Markov chain r(t) can be rewritten as

dr(t) =


R
h(r(t−), y)N(dt, dy),

where N(dt, dy) is Poisson random measure, with random mea-
sure dt × m(dy), in which m(dy) is the Lebesgue measure on R.
And for simplicity, we letN(dt, dy) = N(dt, dy) − dt × m(dy),

which is the martingale measure.

3. Preliminaries

In this section, we shall consider existence and uniqueness and
several properties for the interest model (1.3).

Lemma 3.1. Let assumption (A) hold. Then the SDE defined by (1.3)
has a unique nonnegative solution.

Proof. Recall that the Markov chain can be rewritten as

rt = r0 +

∞
n=1

ZnI(τn ≤ t), (3.1)

where τn, Zn have the following conditional distributions. Given
that r(τk) = i, τk+1−τk follows exponential distributedwithmean
γ −1
ii , and the jump Zk+1 = r(τk+1)−r(τk) is independent of the past

and has a probability of −
γij
γii
. According to Deelstra and Delbaen

(1995), there exists a (pathwise) unique nonnegative solution to
the equation, for each i,

Yt = y +

 t

0
(2β(i)Ys + δ(i))ds +

 t

0
g(Ys, i)dWs, Y0 = y.

Note the unique solution of Yt is a diffusion process without
Markov switching. To emphasize the diffusion Yt with different
diffusion and drift coefficients, for given i, we denote the unique
solution Yt by Y y,i

t . For each k ∈ N, t ∈ [τk, τk+1), we have
rt = j ∈ S. Thus, we obtain a sequence of nonnegative solution
{Y

Yτk ,rτk
t }k∈N. Based on the sequence of nonnegative solutions, we

construct the solution to the model (1.3) as follows. With a bit of
abuse of notation, define, on t ∈ [0, τ1)

Xt = Y X0,i
t .

Then, for τ1 ≤ t ≤ τ2, we define

Xt = Y
Yτ1 ,rτ1
t .
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