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a b s t r a c t

In this paper, we propose an alternative approach for flexible modeling of heavy tailed, skewed insurance
loss data exhibitingmultimodality, such as thewell-known data set on Danish Fire losses. Our approach is
based on finite mixture models of univariate distributions where all K components of the mixture are as-
sumed to be from the same parametric family. Sixmodels are developedwith components from paramet-
ric, non-Gaussian families of distributions previously used in actuarial modeling: Burr, Gamma, Inverse
Burr, InverseGaussian, Log-normal, andWeibull. Someof these component distributions are already alone
suitable tomodel datawith heavy tails, but do not cover the case ofmultimodality. Estimation of themod-
els with a fixed number of components K is proposed based on the EM algorithm using three different
initialization strategies: distance-based, k-means, and random initialization. Model selection is possible
using information criteria, and the fitted models can be used to estimate risk measures for the data, such
as VaR and TVaR. The results of the mixture models are compared to the composite Weibull models con-
sidered in recent literature as the best models for modeling Danish Fire insurance losses. The results of
this paper provide new valuable tools in the area of insurance loss modeling and risk evaluation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Modeling insurance losses is more art than science. Techniques
that sometimes work well for one data set may not be applicable
to another data set. An actuary needs to weigh many factors
surrounding the modeling such as risk management and pricing
decisions or impact on capital requirements. Recent literature on
the modeling of heavy tailed insurance loss data tends to focus
more on simple models based on single parametric distributions
and composite models (Bakar et al., 2015). Composite modeling
is also referred to as splicing (see Klugman et al., 2012). For these
models, estimation tools are in general already available, e.g., in the
open-source environment for statistical computing and graphics R
(R Core Team, 2015).

Limited literature exists on modeling insurance losses using
K -component finite mixture models from parametric, non-
Gaussian families of distributions exploring effective computa-
tional strategies. Notable exceptions are Lee and Lin (2010) and
Verbelen et al. (2015, 2016) who consider finite mixtures of
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Erlang distributions. In this paper, we present the flexible
finite mixture approach for modeling insurance losses using suit-
able parametric distributions, other than Erlang, for the com-
ponents focusing on distributions previously proposed in the
actuarial science. We show how the estimation with the expec-
tation–maximization (EM) algorithm and model selection can be
performed, and illustrate the results of this approach when ap-
plied to the well-known data set of Danish Fire losses. The Dan-
ish Fire data set is characterized as being heavy-tailed by Resnick
(1997) and McNeil (1997). These authors developed several statis-
tical plotting tools such as mean excess plot, QQ-plots, and the Hill
plot for accessing the tail behavior of Danish Fire losses. These tools
are available as part of the R package evir (Pfaff andMcNeil, 2012).

The insurance losses coming from different sources are
heterogeneous as reflected in multimodality, skewness, and heavy
tail distributions. Mixture models can be used to capture the
heterogeneity in the data and allow for the mixture components
to represent groups in the population. Given the different risk
assigned to each of the groups, augmenting the mixture model
with a concomitant model for the weights (Dayton and Macready,
1988) would allow classifying observations into these groups
and thus enable an improved risk evaluation. For these reasons,
modeling the insurance losses using K -component finite mixture
models is an appealing approach. In particular, the K -component
finite mixture models also allow for the flexibility to easily add
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additional components as compared to compositemodeling that is
limited to two distributions only. Ourmodeling approach based on
mixtures is contrasted with the approach proposed in the recently
published paper by Bakar et al. (2015) based on compositeWeibull
models, which so far was found to perform best for the Danish Fire
losses data set.

Different types of mixture models have been considered in
the literature. Keatinge (1999) proposed modeling losses with a
mixture of exponential distributions using maximum likelihood
(ML) estimation based on the Newton’s algorithm. While this
model is useful in some actuarial applications, the mode of this
model is at zero and the distribution is completely monotonic
(see Wang et al., 2006), which may result in a poor fit in the case
of modeling heavy-tail losses. Klugman and Rioux (2006) tried
to address this issue by proposing a flexible mixture model that
will include not only exponential components but also Gamma,
Log-normal and Pareto components with non-negative weights
that sum to one, with the restriction that either weight associated
with the Gamma or Log-normal component equals zero. While
this model allows for the existence of an interior mode with the
inclusion of a Gamma or Log-normal component, the number of
modes is still limited to at most three.

Lee and Lin (2010) proposedmodeling and evaluating insurance
losses via mixtures of Erlang distributions using the EM algorithm
for estimation. The components in the mixture from the Erlang
family were restricted to a common scale parameter to ease
estimation because it allows for an effective initialization of
the EM algorithm based on Tijms (1994) approximation. This
restriction was justified because this class is already dense in
the space of positive continuous distributions. However, it can be
assumed that restricting the scale parameter leads to mixtures
containing more components in order to achieve a suitable fit
than would be necessary in an unrestricted setting. Lee and
Lin (2010) showed that Log-normal, Gamma, and Generalized-
Pareto densities can be suitably approximated with these Erlang
mixtures, and they also demonstrated their proposed approach
on catastrophic loss data from the United States. Verbelen et al.
(2015) further extended the approach of fitting mixtures of Erlang
distributions with the EM algorithm to censored and truncated
data, using also the approximation by Tijms (1994) to initialize the
EM algorithm. Multivariate Erlang mixtures with a common scale
parameter are studied by Verbelen et al. (2016). They introduced
a computationally efficient initialization and adjustment strategy
iteratively used by the EMalgorithm for the estimation of the shape
parameter vectors, and their implementation of the EM algorithm
is publicly available in the form of R code.

We extend mixture modeling beyond the Erlang family for
the components and without imposing a restriction on any of
the parameters. Six finite mixture models are developed with
component-specific distributions from parametric, non-Gaussian
families: Burr, Gamma, Inverse Burr, InverseGaussian, Log-normal,
and Weibull. Estimation of all these models is possible using
the EM algorithm, and we consider three different initialization
strategies for the EM algorithm: distance-based, k-means, and
random initialization. We compare our results to the composite
models previously fitted to the same data sets and shown to
perform best on this data set by Bakar et al. (2015). Those models
use the Weibull distribution up to a threshold and a family of
transformed Beta distributions beyond the threshold for modeling
the heavy tail. Bakar et al. (2015) showed that composite models
based on Burr, Paralogistic, and Logistic distributions for the tail
fitted the real data better than those composite models based
on Log-normal, Pareto (Inverse Pareto), and Gamma distributions.
When comparing our results to those published by Bakar et al.
(2015) using the same real data set, we show that finite mixture
models may fit the data better than composite Weibull models, if
the component-specific parametric family is suitably chosen.

In Section 2, we introduce the models, describe the EM algo-
rithm for estimation, along with different initialization methods
and computational strategies, propose suitable model selection
criteria, and outline how risk measures can be calculated for these
models. In Section 3, we apply our methodology by fitting the fi-
nite mixtures with component distributions from the six different
parametric families to the well-known Danish Fire losses and dis-
cuss our findings. In the same section, we provide the results of the
simulation studies. Section 4 concludes.

2. Methodology

2.1. Problem setting

Let X = {X1, X2, . . . , Xn} be a sample of independent and
identically distributed random variables from a K -component
finite mixture of probability distributions. The mixture model in
parametric form is defined as

f (x|9) =

K
k=1

πkφk(x|θk), (2.1)

where 9 = (π′, θ′)′ = (π1, π2, . . . , πk, . . . , πK−1, θ
′

1, θ
′

2, . . . , θ
′

k,
. . . , θ′

K )′ is the vector of unknown parameters, πk denotes the
component weight of the kth component satisfying 0 < πk ≤ 1,
∀k ∈ {1, . . . , K} and

K
k=1 πk = 1, and θk are the parameters

of the kth density function φk(·). We assume that the φk are
density functions that are absolutely continuous with respect to
the Lebesgue measure and are elements from the same univariate
parametric family with a d-dimensional parameter vector θk,
ℑ = {φk(·|θk), θk ∈ Θ ⊂ Rd

}. For a mixture as given in Eq.
(2.1), the component densities φk(·) are assumed to be from the
same parametric family and differ only in component parameters
θk. Six different density functions are considered: Burr, Gamma,
Inverse Burr, Inverse Gaussian, Log-normal, and Weibull. These
parametric distributions are commonly employed inmodeling loss
data and are thus used as basic building blocks to generate more
flexible distributions by incorporating them into the finite mixture
framework. Finite mixture distributions are well known for their
flexibility in modeling heterogeneous data.

For estimating these finite mixture models, first ML estimates
of the parameters can be obtained for a given K and parametric
family using the EM algorithm as proposed by Dempster et al.
(1977) and outlined in Section 2.2. Details regarding initialization
of the EM algorithm and computational strategies are described in
Sections 2.3 and 2.4. Then a suitable model can be selected based
on model selection criteria (see Section 2.5).

2.2. The EM algorithm and parameter estimation

The EM algorithm is an iterative method for finding the ML
parameter estimates of a given model and usually is employed
when the data is incomplete or has missing values. The method
exploits the fact that in general themaximization problem is easier
for the complete data than the incomplete data. Every iteration of
the EM algorithm consists of two steps: expectation (E-step) and
maximization (M-step).

In the finite mixture framework, the missing observations
correspond to the component identifiers. The density function
f (x|9) in Eq. (2.1) is referred to as the incomplete data densitywith
the associated log-likelihood ℓx(9) =

n
i=1 log f (xi|9).

For the implementation of the EM algorithm, the complete data
log-likelihood function is required.We consider a randomvector of
complete information C = (X, Z), where X represents a random
variable corresponding to the observed sample and Z = (Zik ∈

{0, 1}, i = 1, . . . , n, k = 1, . . . , K) is the set of latent random
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