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a b s t r a c t

The accurate estimation of outstanding liabilities of an insurance company is an essential task. This is to
meet regulatory requirements, but also to achieve efficient internal capital management. Over the recent
years, there has been increasing interest in the utilisation of insurance data at amore granular level, and to
model claims using stochastic processes. So far, this so-called ‘micro-level reserving’ approach hasmainly
focused on the Poisson process.

In this paper, we propose and apply a Cox process approach tomodel the arrival process and reporting
pattern of insurance claims. This allows for over-dispersion and serial dependency in claim counts, which
are typical features in real data. We explicitly consider risk exposure and reporting delays, and show
how to use our model to predict the numbers of Incurred-But-Not-Reported (IBNR) claims. The model is
calibrated and illustrated using real data from the AUSI data set.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The financial liability of insurers due to outstanding claims typ-
ically represents more than half of the company’s total liabilities,
and a factor of its economic capital. Its accurate estimation is thus
of paramount importance. Some of the complexity of this reserv-
ing problem is due to reporting delays, leading to claims that have
occurred, but have not been reported yet (‘‘IBNR’’). In this paper,
we are interested in estimating the number of IBNR claims using
micro-level data.

Nowadays, insurers record detailed information for each
individual claim, which may include, for example, arrival and
reporting dates of a claim, as well as the date and amount of each
transaction. This is what we call a micro-level data set. If, on the
other hand, information is aggregated over a (small) number of
(long) discrete time periods, then data is qualified as ‘macro-level’.
This is the case, for instance, of loss reserving triangles. A vast
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majority of the literature on modelling insurance claims is based
on macro-level claims data, including the Mack’s chain-ladder
model (Mack, 1993), where a typical choice is to use a random
variable to model each data point of aggregated observations. For
more examples, one can refer to Taylor (2000) and Wüthrich and
Merz (2008).

A micro-level approach can arguably present advantages over a
macro-level approach. Firstly, the aggregation of information may
lead to the disappearance of useful, perhaps material information.
For example, information of the arrival and reporting time of each
individual claim (and their trends) may be critical for the quality of
a model. Secondly, parameter uncertainty of a macro-level model
can be high due to a small number of observations (England and
Verrall, 2002), resulting in less predictive power. Some of the
early theoretical work in modelling micro-level claims arrival and
development can be traced back to Arjas (1989) and Norberg
(1993, 1999, who adopted a marked Poisson process approach).
In recent years, Antonio and Plat (2014) and Larsen (2007)
have further implemented Norberg’s framework with real data
sets. Moreover, Pigeon et al. (2013) and Pigeon et al. (2014)
develop a discrete time framework, whereby numbers of claims
follow Poisson distributions. Besides the papers that study the
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overall micro-level claims modelling, Jewell (1989), Zhao et al.
(2009), Zhao and Zhou (2010) have focused on the issue of
modelling the claims arrival with a Poisson process as well as
the reporting delay distribution, while Taylor et al. (2008) model
individual claims development using case estimates as additional
information.

The natural choice of methodology to model micro-level data
is to use a continuous stochastic process. The classical model for
claims processes is the Poisson process (see, e.g., Mikosch, 2006),
under which the average number of claims per time unit is a
constant λ.

An alternative and more general approach is to adopt a deter-
ministic function λ(t) instead to model the claim intensity, which
results in an inhomogeneous Poisson process. The increased flex-
ibility permits an approach that more accurately represents the
nature of claim frequencies in practice where the intensity is not
stationary. However, it still does not capture overdispersion,
which is frequently observed in claim counts data (for example,
see Section 2.9 of de Jong and Heller, 2008) and such a deter-
ministic intensity does not allow for serial dependency of claims
counts (see Denuit et al., 2007).

The issues mentioned above can be solved by modelling the
intensity as a non-negative stochastic process. This results in a
doubly stochastic Poisson process, or Cox process (see, for exam-
ple Cox, 1955; Lando, 1998). Doubly stochastic Poisson processes
have beenwidely applied in varying research areas, such as finance
(Frey and Runggaldier, 2001), credit risk modelling (Lando, 1998),
risk theory (Björk and Grandell, 1988; Albrecher and Asmussen,
2006), mortality modelling (Biffis, 2005; Schrager, 2006), catastro-
phe modelling (Dassios and Jang, 2003; Jang and Fu, 2012), insur-
ance claim modelling (Avanzi et al., 2016; Badescu et al., 2015,
2016), reinsurance pricing (Dassios and Jang, 2005) and opera-
tional risk modelling (Jang and Fu, 2008).

There are a number of possible choices for the intensity
process under the Cox process approach, for example, a diffusion
process (Frey and Runggaldier, 2001; Schrager, 2006), a continuous
time Markov chain (Frey and Runggaldier, 2001), a discrete time
process with state-dependent (Erlang) intensities (Badescu et al.,
2015, 2016), a jump-diffusion process (Biffis, 2005) or a shot noise
process (Dassios and Jang, 2003, 2005; Albrecher and Asmussen,
2006). In this paper, we focus our illustration using the shot noise
process, which processes a number of attractive behaviours such
as tractability and mean reverting intensity.

A complication arising from the use of a Cox process lies in its
estimation. When a (homogeneous) Poisson process is assumed,
standard likelihood techniques are available (see, for exam-
ple, Mikosch, 2006). However, themaximum likelihood estimation
approach is in general not directly applicable to a Cox process. This
is because the arrivals of insurance claims are not independent un-
der the shot noise assumption. Secondly, although the complete
likelihood of observing both the Cox process and the shot noise
process is simple to derive, the likelihood of observing the Cox
process unconditionally on the shot noise process involves a high
dimensional integral, which is not computationally efficient to cal-
culate. Furthermore, the prediction of the IBNR counts under a Cox
process model also requires the estimation of the unobservable in-
tensity. For all those reasons, the development of a filtering algo-
rithm is necessary.

In the case of a shot noise intensity, two filtering methods have
been proposed in the literature. One method is to use a Kalman
filter, which involves Gaussian approximation and is suitable in
the case with high frequency but low impact shots (Dassios and
Jang, 2005). The other method is to use a Reversible Jump Markov
Chain Monte Carlo (‘‘RJMCMC’’) filter (Centanni and Minozzo,
2006a,b), which is based on RJMCMC simulations of the shot
noise trajectory. A comparison of these two methods can be found

in Avanzi et al. (2016). However, the actual implementation of the
model to insurance data is not straightforward, and is generally
not discussed in the existing actuarial literature. In particular, the
frequency of claims is subject to exposure and reporting delays.
These require non trivial model extensions. The filtering algorithm
must also be modified in order to allow for such features. In this
paper, we address these issues in the model construction and
estimation.

This paper is structured as follows. The model assumptions
along with some of the main theoretical properties are introduced
in Section 2.We consider estimationmethods in detail in Section 3,
and extend the existing methodology to allow for varying risk
exposure, and for reporting delays. We illustrate the procedures
and performance of the estimation and prediction algorithms with
a simulated dataset in Section 4. Furthermore, we calibrate our
model to theAUSI (real) insurance data set in Section 5, andprovide
prediction results.

For convenience, a table with notation used throughout the
paper is provided in Appendix D.

2. A shot noise Cox process with exposure and reporting delays

In this section, we develop the shot noise Cox model that is
considered in this paper. Section 2.1 reviews the stationary shot
noise Cox model without reporting delays. Section 2.2 defines an
appropriate non-stationary version in order to allow for exposure
changes over time, and Section 2.3 explains how reporting delays
can be incorporated.

2.1. A stationary shot noise Cox process model

Model assumption 2.1.1 (Cox Process, Grandell, 1976). Denote by
N(t) the number of claims up to time t . We assume that {N(t), t ≥

0} is a Cox process, that is, there exist a non-negative stochastic
process {Λ(t), t ≥ 0} and a homogeneous Poisson process with
intensity rate 1, {Ñ(t), t ≥ 0}, such that {N(t), t ≥ 0} has the same
distribution as Ñ ◦

 t
0 Λ(s)ds


.

A Cox process (Model assumption 2.1.1) can be interpreted as
an extension of a Poisson process, where the intensity process
{Λ(t), t ≥ 0} is stochastic. In particular, we assume that the
stochastic intensity, Λ(t), is a shot noise process (see, for
example, Jang, 2004; Centanni and Minozzo, 2006a,b).

Model assumption 2.1.2 (Homogeneous Shot Noise Intensity Pro-
cess). The stochastic intensity Λ(t) is a stationary shot noise pro-
cess if

Λ(t) = Λ(0)e−kt
+

J(t)
j=1

Xje−k(t−τj), t ≥ 0, (2.1)

where τj represents the arrival time of the shots resulting from a
homogeneous Poisson process J(t) with a deterministic intensity
ρ, and the shots Xj’s are independent and identically distributed
random variables with a density function fX (on the positive
domain with finite mean). Furthermore, we assume that Λ(0), the
initial level of Λ(t), follows the stationary distribution of the shot
noise process. This is a convenient assumption and ensures that the
shot noise process is stationary from t = 0.

Remark 2.1. In this paper, we follow the literature (see, for
example, Dassios and Jang, 2003; Jang, 2004; Dassios and Jang,
2005; Centanni and Minozzo, 2006a,b; Avanzi et al., 2016) and
consider an exponential decay function. However, it should be
noted that alternative decay functions can be considered, at a slight
loss of mathematical convenience (see, Schmidt, 2014, for details).
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