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a b s t r a c t

In this paper a one-dimensional surplus process is considered with a certain Sparre Andersen type
dependence structure under general interclaim times distribution and correlated phase-type claim sizes.
The Laplace transform of the time to ruin under such a model is obtained as the solution of a fixed-
point problem, under both the zero-delayed and the delayed cases. An efficient algorithm for solving the
fixed-point problem is derived together with bounds that illustrate the quality of the approximation. A
two-dimensional risk model is analyzed under a bailout type strategy with both fixed and variable costs
and a dependence structure of the proposed type. Numerical examples and ideas for future research are
presented at the end of the paper.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For a given initial surplus u ∈ R+, we denote by X = {X(t), t ∈

R+} the insurer’s surplus, whose evolution at t ∈ R+ is given by

X(t) = u + ct −

N(t)
i=1

Jk.

Here, the premium rate c is assumed to be strictly positive. We
denote by N(t) = max{k ∈ N : Tk ≤ t} for t ∈ R+ the number
of claims by time t and we assume independence among each
generic pair interclaim time-claim size {(Tk, Jk)}∞k=1. Furthermore,
we assume that the surplus process X(t) has a Sparre Andersen
type dependence structure, defined by

P(Tk ∈ dt, Jk ∈ dx) = α(dt) eRx r dx t, x ∈ R+, (1)
where α(dt) ∈ Rm, is a 1 × m distribution vector, R is an m × m
sub-generator matrix, r an m × 1 vector given by r = (−R)1,
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with 1 denoting the m × 1 vector of ones. Note that within each
pair interclaim time-claim size the random variables Tk and Jk are
dependent, whereas the pairs {(Tk, Jk)}∞k=1 are independent and
identically distributed (i.i.d.) random variables. For this riskmodel,
we assume that the safety loading condition for surplus {Xt , t ≥ 0}
is satisfied, i.e. that cE(T1) > E(J1).

In a similar fashionwe introduce the correspondingdelayed risk
model where the joint distribution of the time of the first arrival
and its jump-size differs from the joint distributions of time and
jump-size corresponding to later arrivals, i.e. for k = 1

P(T1 ∈ dt, J1 ∈ dx) = αD(dt)eRx r dx, (2)
while, for k ≥ 2, P(Tk ∈ dt, Jk ∈ dx) is given in (1).

Under the dependence structure assumed in (1) and (2) the
claim sizes Jk are phase-type random variables with generator
matrix described by R, whereas the vector α(dt) (or αD(dt) in the
delayed case) gives the joint density of the interclaim times and
the phase of the claim i ∈ 1, . . . ,m at the beginning of the claim.
The generality of this dependence assumption comes from the fact
that the distribution of the interclaim time Tk is equal to α(dt)1,
which may be defective, in the sense that


∞

0 α(dt)1 < 1. This is
an important feature which will be illustrated by the applications
described in the forthcoming sections.
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We remark that under the Markovian arrival process (MAP)
assumption as in Badescu et al. (2005), the interclaim times and
the claim sizes are conditionally independent phase-type random
variables, given the initial phase of the claim. However, under this
particular dependence structure the distribution of the interclaim
times and the initial phase of the claim can be generally distributed
and it is not restricted to a phase-type random variable. The phase-
type renewal riskmodel studied in Asmussen and Albrecher (2010,
Chapter 9), the MAP arrival risk model in Badescu et al. (2005)
and the bivariate phase type renewal model from Badescu and
Landriault (2009) are just particular cases that can be obtained
from our underlying dependence assumption.

Willmot and Woo (2012) proposed a very general dependence
structure of the form

m
i=1
ni

j=1 kij(t)bij(x), where kij(t) repre-
sents the interclaim probability density function (pdf) and bij(x)
the pdf of the claims. Note that when ni = 1, [α(t)]i = ki(t)
and bi(x) = [eRxr]i their formula reduces to (1). Despite of the
generality of their model, Willmot and Woo (2012) obtain ruin
related measures in an explicit numerically implementable form
onlywhen further assumptions, such as combination of Erlang type
densities, are made on the interclaim and claims sizes.

The objective of our paper is two-fold. On the one hand, we
are interested in deriving the Laplace transform of the time to
ruin in such a general model, in a form that can be numerically
implemented. On the other hand, by deploying the dependence
structures proposed in (1) and (2) and the results obtained in the
first part, we model and analyze certain scenarios that may be of
interest in insurance, or in other areas like queueing theory. More
specifically, in one of the applications thatwe consider in this paper
we propose a two-dimensional surplus model that is driven by
a bailout strategy. Such a bailout strategy is associated with the
provision of financial support to a company or a country which
faces serious financial difficulty or even bankruptcy. Along these
lines, we propose a model with a main branch that injects capital
into the subsidiary every time the surplus level of the subsidiary
drops below a predefined level. Moreover, we assume that the
main branch faces certain transaction costs associated to each of
the capital injections. One of the questions of interest that we
address in the paper is: How long does it take until themain branch
will be bankrupted? Another useful application that can be tackled
using the results derived in Sections 2 and 3 is a queueing model
that involves priority queues with flushes, which will be briefly
described in the last section which outlines some directions for
future research.

The remainder of the paper is organized as follows. In Section 2
we obtain a fixed-point equation for the Laplace transform of
the time to ruin in the zero-delayed and the delayed cases.
The algorithm and the convergence of the proposed method are
analyzed in Section 3 for the general dependence structures from
(1) and (2). In Section 4 we study the proposed bailout strategy in
an insurance context and we illustrate numerically the accuracy
of our results. Section 5 presents conclusions and some further
research applications.

2. The Laplace transform of the time to ruin

In this section we consider the one-dimensional risk model
described in Section 1 focusing on the derivation of the Laplace
transform of the time to ruin τ , defined as τ = inf{t ≥ 0 :

X(t) < 0}. For this, we let ψ(t, u) = Pu(τ < t) to be the finite
time ruin probability, and denote its associated Laplace transform
by ψ̂(q, u) =


∞

0 qe−qtψ(t, u) dt . The results obtained in this
section extend the results obtained under the renewal risk model
by Asmussen and Albrecher (2010) in Chapter 9, Theorem 4.4, and
the fixed-point problem in Proposition 4.3.

2.1. Dependent, non-delayed case

For the dependence structure given in (1) we recall that r :=

−R1 where 1 is a Rm×1
+ column vector of ones. Furthermore, for

two vectors v andw of same sizewewill use notation v ≤ wwhen
each entry of vector v is less than the corresponding entry ofw.

Definition 1. For any m × m negative-definite matrix Q and 1 ×

m sub-probability vector-valued measure α(dt) on R+ \ {0}, we
denote by α̂(Q ) the 1 × m vector

α̂(Q ) :=


∞

0
α(dt)eQt .

Let us now denote by Lα(q), q ≥ 0, the Laplace transform of the
(one-dimensional) sub-probability measure α(dt)1. One then has
that Lα is linked to α̂ via

Lα(q) :=


∞

0
e−qtα(dt)1 = α̂(−qI)1.

Theorem 1. For any q > 0 the Laplace transform of the time to ruin
is given by

ψ̂(q, u) = ρ̂(q)eΓ (q)u1, u ∈ R+, (3)

where ρ̂(q) is a 1×m sub-probability vector satisfying the fixed-point
equation

ρ̂(q) = α̂(cR + c r ρ̂(q)− qI), (4)

and Γ (q) = R + r ρ̂(q).
If q = 0 there exists a 1 × m sub-probability vector ρ̂(0)

verifying (4) such that expression (3) holds for ψ̂(0, u).

Remark 1. The fixed point Eq. (4) is a matrix extension of the fa-
mousKendall equation for the Laplace transformof the busy period
density—see Feller (1971, XIV.4(4.1)). The connection to branching
processes, which makes this equation transparent and explains its
frequent appearance in applied probability, is also explained there.
As commented by a referee, this type of equation can be easily ‘‘im-
ported’’ from queueing theory by swapping the meaning of inter-
claim times and claim sizes, so that one gets a MAP with positive
jumps (this is one form of queueing-risk duality).

Due to its appearance in three research fields, Eq. (4) has often
been studied under different levels of generality—see for example
Rogers (1994), Asmussen (1995), Pistorius (2006), Breuer (2008)
and D’Auria et al. (2010).

Proving the uniqueness of the fixed point is not straightforward
in the case q = 0, but see D’Auria et al. (2010). For completeness,
we include our own proof of both cases in the Appendix.

Let us provide now a direct probabilistic argument for the fixed
point equation. Starting at level u the process has to make a first-
passage back to level u, this quantity being given by the LT of the
busy period ρ̂(q) jointly with the phase of the claim at the down-
crossing time. Furthermore, being in a claim phase, the surplus has
to make a first passage to level 0. The associated Laplace transform
of this first passage time together with the phase of the claim at
themoment of crossing level 0 is given by eΓ (q)u. The Laplace trans-
form of the busy period ρ̂(q) is essential in the calculation of any
ruin related measure and is a solution of the fixed-point Eq. (4).
Badescu et al. (2005) showed that the equivalent busy period in
the case of risk processeswithMarkovian claim arrivals and phase-
type claim amounts is the unique solution of an equivalent matrix
Riccati equation. By rephrasing the problem in terms of a Markov-
additive process (MaP) the matrix Γ (q) may be identified as the
generator of the downward ladder process of a certain MaP satis-
fying the matrix equation K(Γ (q)) = 0, where K(s) = −sI + R +

r

(0,∞)

α(dt)e+cst−qt ; if q > 0, this solution may be shown to be
unique in the set of irreducible negative definite matrices.
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