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a b s t r a c t

Stochastic loss reserving with dependence has received increased attention in the last decade. A number
of parametric multivariate approaches have been developed to capture dependence between lines of
businesswithin an insurer’s portfolio.Motivated by the richness of the Tweedie family of distributions,we
propose amultivariate Tweedie approach to capture cell-wise dependence in loss reserving. This approach
provides a transparent introduction of dependence through a common shock structure. In addition, it also
has a number of ideal properties, including marginal flexibility, transparency, and tractability including
moments that can be obtained in closed form. Theoretical results are illustrated using both simulated data
sets and a real data set from a property-casualty insurer in the US.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In a non-life insurance company, there is typically a delay be-
tween the occurrence of an insured event and the actual payment
of its related claims. This delay can be driven by various reasons,
including delays in reporting claims, investigation of claim valid-
ity, and legal proceedings. In order to sustain financial stability and
meet regulatory requirements, it is essential for insurers to have
sufficient reserves to respond to the outstanding claims. These loss
reserves are one of the largest liabilities on the balance sheet of
an insurer (see for example, Alai and Wüthrich, 2009; Shi, 2014;
Zhang et al., 2012), which further emphasises the importance of
having an adequate estimation of outstanding liabilities. This is fur-
ther discussed andmotivated in the excellent general reference by
Wüthrich and Merz (2008).

When a company has more than one line of business, one ap-
proach for loss reserving is to simply add the reserves of each in-
dividual business line. However, this approach is only accurate in
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the perfectly positive dependence case, and as a result, an insurer
is unable to enjoy diversification benefits (De Jong, 2012; Shi et al.,
2012). This subsequently motivates the development of stochastic
loss reserving with non-perfect dependence; see for example, Ab-
dallah et al. (2015), Merz andWüthrich (2009a), Merz et al. (2013)
and Zhang et al. (2012).

One of the main streams of the literature on stochastic loss
reserving with dependence focuses on cell-wise dependence
between business lines (Merz et al., 2013). This refers to the
dependence between claims coming from the same accident and
development periods in different run-off triangles. Earlymodelling
developments with this type of dependence include multivariate
additive models by Hess et al. (2006); Merz andWüthrich (2009b)
and Schmidt (2006). Copulas have also been used in models with
cell-wise dependence, for example, Shi and Frees (2011) and
Zhang and Dukic (2013). A later stream of the literature has also
incorporated an additional source of dependence arising from
calendar year effects, see, for example, Bühlmann and Moriconi
(2015), De Jong (2012), Salzmann and Wüthrich (2012) and Shi
(2014).

Methodologies used in loss reserving models with dependence
can be classified into two main groups, (i) parametric models, and
(ii) non-parametric models (Shi et al., 2012). Parametric models
utilise distributional families, while the later ones do not. Themost
popular parametric approach in the literature is to use copulas. Shi
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and Frees (2011) proposed a flexible copula model with marginal
generalised linear models (GLM). De Jong (2012) used a Gaussian
copula approach to capture the dependence between lines. Zhang
and Dukic (2013) developed a Bayesian copula framework with
flexible marginal modelling for cell-wise dependence. Abdallah
et al. (2015) used a hierarchical Archimedean copula structure
to capture calendar year dependence between lines. The copula
approach has the great benefit of having flexibility because it
allows marginal densities and joint dependence to be modelled
separately. Besides copulas, there have also been developments
utilising a multivariate distribution for a specific marginal
density, particularly, log-normal distributions. Examples include
the multivariate log-normal frameworks for incremental claims in
Shi et al. (2012) and for log-link ratios in Merz et al. (2013).

The search for multivariate modelling approaches drew our
attention to a multivariate Tweedie distribution for margins from
the Tweedie family of distributions. The Tweedie family is a major
subclass of the exponential dispersion family (EDF) consisting
of symmetric and non-symmetric, light-tailed and heavy-tailed
distributions (Alai et al., 2016; Jørgensen, 1997). This class and its
members are frequently used in loss reserving, see for example,
Alai and Wüthrich (2009), Boucher and Davidov (2011), England
and Verrall (2002), Peters et al. (2009), Renshaw and Verrall
(1998), Taylor (2009, 2015), Wüthrich (2003) and Zhang et al.
(2012). Furthermore, it is a generalisation of the plain vanilla
Chain Ladder Poisson model. A recapitulation of some properties
of the univariate Tweedie family of distributions is provided in
Appendix A.

In this work, we focus on a multivariate Tweedie distribution
developed by Furman and Landsman (2010). The Tweedie family is
a broad class of commonly used distributions, and themultivariate
distribution is developed through a common shock approach.
These allow a multivariate Tweedie framework to have many
advantages. Namely, the advantages of our model include:

– Dependence is introduced with the help of a easily identifiable,
explicit common shock dependence structure, which is easily
generalised to more than two dimensions.

– While all dimensions must have same parameter p, this can be
anywhere in (−∞, 0] ∩ [1, ∞) (rather than fixed at 1 for a
Poisson dispersion or 2 for a gamma dispersion, for instance).
The flexibility of Tweedie dispersions has been established
in Alai et al. (2016), Alai and Wüthrich (2009), Furman and
Landsman (2010) and Jørgensen (1997). Additionally, zero data
points do not present any issue.

– The distributions of (multivariate) margins belong to the same
Tweedie family. Furthermore,moments and cumulants that can
be obtained analytically, and cumulants of the sum (of reserves)
can be given in closed form.

The paper is organised as follows. In Section 2, we introduce
a multivariate Tweedie framework. Appropriate parametrisation
is considered and appealing properties of this framework are
also discussed. An analysis of moments and cumulants from
the framework is performed in Section 3. Bayesian inference is
developed in Section 4 for model fitting and forecasting. The
choices of prior distributions, estimation procedure and Markov
Chain Monte Carlo (MCMC) method are also discussed. Section 5
applies the theoretical framework to simulated data sets to assess
the accuracy of the estimation procedure. An illustration on real
data is then provided in Section 6. Section 7 concludes the paper
with some remarks about the model and its applications.

2. A multivariate Tweedie dependence approach

2.1. Notation

We consider a portfolio of N sub-portfolios that represent N
lines of business. Notation X (n)

i,j represents the total incremental
claim that corresponds to the accident period i, i ∈ {1, . . . , I},
and development period j, j ∈ {0, . . . , J}, in the nth business line.
These claims are hence made in calendar period t = i + j, t ∈

{1, . . . , I}.
Instead of directly modelling the losses, one often standardises

incremental claims using exposure variables to obtain consistency
across different accident years and lines of business. Common
exposure variables, denoted by ω

(n)
i,j , can, for example, be the

number of policies, the amount of premiums written, or the total
amount insured. Standardised incremental claims are denoted by

Y (n)
i,j =

X (n)
i,j

ω
(n)
i,j

. (2.1)

The set of all claims observations up to the estimation date is
represented by

YU
=


Y (n)
i,j ; 1 ≤ i ≤ I, 0 ≤ j ≤ I − i, 1 ≤ n ≤ N


, (2.2)

and the set of all outstanding claims that are to be predicted is
denoted by

Y L
=


Y (n)
i,j ; 1 < i ≤ I, I − i + 1 ≤ j ≤ J, 1 ≤ n ≤ N


. (2.3)

Theprimary goal of a loss reservingmodel is to use historical claims
information YU to predict the amount of outstanding claims Y L.

2.2. Model construction

In this section we will develop a multivariate Tweedie frame-
work for claims from multiple lines of business. Following the lit-
erature stream that models cell-wise dependence between lines of
business, amultivariate Tweedie distribution is used to capture de-
pendence between cell-wise claims. Standardised cell-wise claims
from the ith accident period and jth development period across all
lines of business are first collected into a vector

Yi,j =


Y (1)
i,j

Y (2)
i,j

...

Y (N)
i,j

 . (2.4)

Each element of the above vector is assumed to be a sum of two
components

Y (n)
i,j =

θ

θ
(n)
i,j

Wi,j + Z (n)
i,j , (2.5)

whereWi,j is referred to as the ‘‘common shock’’ and Z (n)
i,j is referred

to as the ‘‘idiosyncratic effect’’. These two components are assumed
to be independent and have additive Tweedie distributions

Wi,j ∼ Tweedie∗

p(θ, λ), (2.6)

Z (n)
i,j ∼ Tweedie∗

p(θ
(n)
i,j , λ

(n)
i,j ). (2.7)

The definition of additive Tweedie distributions as well as other
properties of the Tweedie family of distributions are provided in
Appendix A.
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