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a b s t r a c t

The problem of determining probability densities of positive random variables from empirical data is
important inmany fields, in particular in insurance and risk analysis. Themethodofmaximumentropyhas
proven to be a powerful tool to determine probability densities from a few values of its Laplace transform.
This is so even when the amount of data to compute numerically the Laplace transform is small. But in
this case, the variability of the reconstruction due to the sample variability in the available data can lead
to quite different results. It is the purpose of this note to quantify asmuch as possible the variability of the
densities reconstructed by means of twomaxentropic methods: the standard maximum entropy method
and its extension to incorporate data with errors.

The issues that we consider are of special interest for the advanced measurement approach in
operational risk, which is based on loss data analysis to determine regulatory capital, as well as to
determine the loss distribution of risks that occur with low frequency.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

One of the methodologies that banks can use to determine reg-
ulatory capital for operational risk is the advanced measurement
approach, which is based on the possibility of determining the op-
erational risk capital from the probability density of the yearly
losses. Actually the problem of determining the probability density
of compound losses has received a lot of attention since a long time
ago in the literature devoted to insurance matters. But since the
Basel Committee proposals to measure and manage operational
risk, it had a revival. See Cruz (2002), Panjer (2006) or Shevchenko
(2011) for a variety of aspects about the problem and for proce-
dures to obtain the probability density of aggregate losses from the
historical data. The two volumes just mentioned are part of a large
body of literature devoted to the theme. To mention just a few pa-
pers rapidly cascading into a large pool of literature, consider Aue
and Kalkbrenner (2006), Temnov and Warnung (2008) and Brock-
mann and Kalkbrenner (2010)

In a series of previous papers, see Gzyl et al. (2013), we explored
the usefulness of the maximum entropy based (maxentropic) pro-
cedure to determine the density of aggregate losses, and compared
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the procedure to standard procedures like Fourier inversion tech-
niques, direct computation of the total loss density by convolution
or reconstruction from integral moments.

The power of the method that we apply here, stems from the
possibility of inverting the Laplace transform of a positive random
variable S from the knowledge of a few values of its Laplace trans-
form ψ(α) = E[e−αS

] at a small set of values of the parameter
α by recasting the problem into a fractional moment problem on
[0, 1] after the transformation x = e−s. Furthermore, an interest-
ing feature of the methodology is that the statistical error in the
estimation of ψ(α) can be incorporated into the procedure, as de-
veloped in Gomes-Gonçalves et al. (2014), and that the procedure
itselfmakes no assumptions about the statistical nature of the data.

That the maxentropic methods work when the amount of
data is large, was the subject matter of Gomes-Gonçalves et al.
(2015a,b). In the first of these, the aim was to examine the per-
formance of two maxentropic methods to determine the density
of aggregate losses. In the second, it was supposed that the losses
may be produced by different sources of risk, that is, that may have
different types of events producing losses at different rates, but the
available data consists of the total loss. The problem in this case is
to disentangle the different sources of risk, and to determine the
nature of the individual losses.

In our previous work, we have seen that maximum entropy
based techniques are quite powerful to determine density
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distributions when the amount of data is large. The maxentropic
techniques work equally well when the amount of data is small,
a situation which happens when analyzing operational risk data
for example. In this case, one expects the resulting densities to
depend on the sample used to compute the moments. Fortunately,
the dependence of the maxentropic density on the sample is such
that its variability can be analyzed explicitly. It is our aim here
to analyze the variability of the reconstructed densities, and on
the other hand to examine the impact of this variability on the
estimation of the regulatory capital.

To state the problems with which we shall be concerned, let
us begin saying that we are interested in compound variables of
the type S =

N
k=0 Xk, where N is an integer valued random

variable describing the (yearly, say) frequency of events, and Xk is
the individual severity of each loss.What the analyst observes each
year is a collection {n; x1, . . . , xn}, where n is the number of risk
events and {x1, . . . , xn} are the losses occurring at each event. The
aggregate loss for that year is s =

n
k=0 xk. When n = 0 there

were no losses, the sum is empty and s = 0. Suppose that the
record consists of M years of data. From these, the analyst has to
determine the distribution of losses, which is the intermediate step
in the calculation of regulatory capital or some other measure of
risk, or perhaps when some insurance premium is to be calculated.
When we need to specify the year j we shall write (nj, x1, . . . , xnj)
and sj =

nj
k=0 xk. For us, an observed sample (of losses) will be an

(M) vector ω = (s1, . . . , sM).
The Laplace transform of S is estimated by

ψ(α) =
1
M

M
j=1

e−αSj (1)

where Sj denotes the losses experienced during the jth year. Later
onwe shall consider themoments corresponding to K values of the
parameter α. Since the distribution function of S has a probability
P(N = 0) = P(S = 0) > 0 at S = 0, to determine the
probability density of the losseswehave to condition out this event
and replace ψ(α) by

µ(α) =
ψ(α)− P(N = 0)
1 − P(N = 0)

(2)

where P(N = 0) is estimated as the fraction of the number of years
of observation in which there were no losses. Notice that if we use
the change of variables y = e−s, we can rewrite (1) as

ψ(α) =
1
M

M
j=1

yα (3)

which is the empirical version of

ψ(α) =

 1

0
yαdFY (y) =


∞

0
e−αxdFS(x).

With this notation, our problem consists of finding a density fY (y)
on [0, 1] such that 1

0
yα fY (y)dy = µ(α),

and once fY (y) has been obtained, the change of variables fS(x) =

e−xfY (ex) provides us with the desired density.
As we shall have to emphasize the dependence of fY on the size

M of the sample, we shall drop the Y and simply write f for it,
and we shall use the notation fM(ω, x) to denote the maxentropic
density reconstructed from the collection of K moments as in
(2). We describe how to obtain fM in Section 2 when we explain
the maximum entropy methods. Note that as (2) depends on the
sampleω, then fM depends onω. To further specify our goals, there

are three things that we want to understand, or develop intuition
about. First, howmuch does fM changewhenwe changeω. Second,
how much do some basic risk measures change when we change
ω, and third, what happens asM becomes very large.

As we shall recall in Section 2, the connection between the
moments µ(α, ω) is quite non-linear, the study of the variability
of fM is not that simple, nevertheless, a few things can be said. We
shall carry this out in Section 3, while in Section 4 we examine
this issue by numerical simulations. The data that we use as input
consists of an aggregation of risks of different nature, so it is not a
simple compound model as that considered in our previous work.

We close this section mentioning that there are other methods
to deal with the problem of inferring loss densities fromdata, some
simpler and somemore elaborate. Consider the well known Panjer
recursion technique, or the fast Fourier transform as described,
say in Embrechts and Frei (2007) or Shevchenko (2011), or the
cubic interpolation spline proposed in den Iseger et al. (1997).
One of the interesting features of the representation provided by
the maxentropic approach is that it provides an explicit analytic
representation of the density which can be used as a starting point
for a systematic analysis of the sample dependence

2. The maximum entropy inversion techniques

We shall describe two complementary approaches to the
density reconstruction problem. First, the standard maximum
entropy (SME) method and then the standard maximum entropy
with error (SMEE) in the data, which is useful to copewith the issue
of data uncertainty.

2.1. The standard maximum entropy method

The procedure to solve the (inverse) problem consisting of
finding a probability density fY (y) (on [0, 1] in this case), satisfying
the following integral constraints: 1

0
yαk fY (y)dy = µY (αk) for k = 0, 1, . . . , K (4)

seems to have been originally proposed in Jaynes (1957). We set
α0 = 0 and µ0 = 1 to take care of the natural normalization
requirement on fY (y). The intuition is rather simple: The class of
probability densities satisfying (4) is convex. One can pick up a
point in that class one by maximizing (or minimizing) a concave
(convex) functional (an ‘‘entropy’’) that achieves a maximum
(minimum) in that class. That extremal point is the ‘‘maxentropic’’
solution to the problem. It actually takes a standard computation
to see that, when the problem has a solution, it is of the type

f (y) = exp


−

K
k=0

λ∗

ky
αk


(5)

which depends on the α’s through the λ′s. It is usually customary
to write e−λ∗

0 = Z(λ∗)−1, where λ∗
= (λ∗

1, . . . , λ
∗

K ) is a K -
dimensional vector. Clearly, the generic form of the normalization
factor is given by

Z(λ) =

 1

0
e
−

K
k=1

λkyαk
dy. (6)

With this notation, the generic form of the solution looks like

f ∗(y) =
1

Z(λ∗)
e
−

K
k=1

λ∗
ky
αk

= e
−

K
k=0

λ∗
ky
αk

. (7)

To complete, it remains to specify how the vector λ∗ can be found.
For that one has to minimize the dual entropy:

Σ(λ,µ) = ln Z(λ)+ ⟨λ,µY ⟩ (8)
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