
Insurance: Mathematics and Economics 71 (2016) 154–163

Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Risk aggregation in multivariate dependent Pareto distributions
José María Sarabia a,∗, Emilio Gómez-Déniz b, Faustino Prieto a, Vanesa Jordá a

a Department of Economics, University of Cantabria, Avda de los Castros s/n, 39005-Santander, Spain
b Department of Quantitative Methods in Economics and TiDES Institute, University of Las Palmas de Gran Canaria, 35017-Las Palmas de G.C., Spain

a r t i c l e i n f o

Article history:
Received May 2015
Received in revised form
July 2016
Accepted 30 July 2016
Available online 24 August 2016

Keywords:
Dependent risks
Individual risk model
Collective risk model
Classical Pareto distribution
Hypergeometric functions

a b s t r a c t

In this paper we obtain closed expressions for the probability distribution function of aggregated risks
with multivariate dependent Pareto distributions. We work with the dependent multivariate Pareto
type II proposed by Arnold (1983, 2015), which is widely used in insurance and risk analysis. We begin
with an individual risk model, where the probability density function corresponds to a second kind beta
distribution, obtaining the VaR, TVaR and several other tail risk measures. Then, we consider a collective
risk model based on dependence, where several general properties are studied. We study in detail some
relevant collective models with Poisson, negative binomial and logarithmic distributions as primary
distributions. In the collective Pareto–Poisson model, the probability density function is a function of the
Kummer confluent hypergeometric function, and the density of the Pareto–negative binomial is a function
of the Gauss hypergeometric function. Using data based on one-year vehicle insurance policies taken out
in 2004–2005 (Jong andHeller, 2008)we conclude that our collective dependentmodels outperformother
collective models considered in the actuarial literature in terms of AIC and CAIC statistics.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The individual and collective risk models (Kaas et al., 2001;
Klugman et al., 2008 respectively) assume independence between:
(i) different claim amounts; (ii) the number of claims and claim
amounts and (iii) claim amounts and inter-claim times. This
facilitates the computation of many risks measures, but can
be restrictive in different contexts. Some recent research seeks
to generalize both individual and collective classical models by
considering some kind of dependence structure.

Sarabia and Guillén (2008) consider extensions of the classical
collective model assuming that the conditional distributions S|N
and N|S belong to some prescribed parametric family, where S
is the total claim amount and N is the number of claims. Using
conditional specification techniques (Gómez-Déniz and Calderín,
2014) have obtained discrete distributions to be used in the
collective risk model to compute the right-tail probability of the
aggregate claims size distribution.

Albrecher and Teugels (2006) consider a copula dependence
structure for the interclaim time and the subsequent claim size.
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Boudreault et al. (2006) study an extension of the classical com-
pound Poisson riskmodel, where the distribution of the next claim
amount is a function of the time elapsed since the last claim. Cos-
sette et al. (2008) consider another extension introducing a depen-
dence structure between the claim amounts and the inter-claim
time using a generalized Farlie–Gumbel–Morgenstern copula. Cos-
sette et al. (2004) employ a variation of the compound binomial
model in a Markovian environment, which is an extension of the
model presented byGerber (1988). Compound Poisson approxima-
tions for individual dependent risks are considered in Genest et al.
(2003).

Finally, Cossette et al. (2013) consider a portfolio of dependent
risks whose multivariate distribution is the Farlie–Gumbel–
Morgenstern copula with mixed Erlang distribution marginals.

In this paper we obtain closed expressions for the probability
distribution function of aggregated risks with multivariate depen-
dent Pareto distributions between the different claim amounts.We
work with the dependent multivariate Pareto type II proposed by
Arnold (1983, 2015), which is widely used in insurance and risk
analysis. In the classic individual risk model, we show that the
probability density function (pdf) corresponds to a beta distribu-
tion of the second kind. Then we obtain several risk measures in-
cluding the VaR and other tail risks measures. Next, we study the
general properties of a collective model with dependent risks, fo-
cusing on some relevant collective models with Poisson, negative
binomial and logarithmic distributions as primary distributions.
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For these three models we obtain simple and closed expressions
for the aggregated distributions.

The contents of this paper are the following: In Section 2
we present the main univariate distributions used in the paper;
Section 3 examines the class of multivariate dependent Pareto
distributions for modeling aggregated risks. Section 4 presents
the individual risk model under dependence and Section 5
introduces the collective risk model under dependence. After
presenting general results we study the compound models where
the primary distribution is Poisson, negative binomial, geometric
and logarithmic and the secondary distribution is Pareto. Section 6
includes an example with real data. The conclusions of the paper
are given in Section 7.

2. Univariate distributions

In this section, we introduce several univariate random
variables which will be used in the paper.

We work with the Pareto distribution with pdf given by,

f (x;α, β) =
α

β(1 + x/β)α+1
, x > 0, (1)

and f (x;α, β) = 0 if x < 0, where α, β > 0. Here, α is a shape
parameter andβ is a scale parameter.We representX ∼ P a(α, β).

We denote by X ∼ Ga(α) a gamma random variable with pdf
f (x) =

xα−1e−x

Γ (α)
if x > 0, with α > 0. The exponential distribution

with mathematical expectation 1 is denoted by Ga(1).
The following lemma provides a simple stochastic representa-

tion of the Pareto distribution as quotient of random variables. The
proof is straightforward and will be omitted.

Lemma 1. Let U1 andUα independent gamma randomvariables such
that U1 ∼ Ga(1) and Uα ∼ Ga(α), where α > 0. If β > 0, the
random variable,

X = β
U1

Uα
∼ P a(α, β). (2)

An extension of the Pareto distribution (1) is the following. A
random variable X is said to be a beta distribution of the second
kind if its pdf is of the form,

f (x; p, q, β) =
xp−1

βpB(p, q)(1 + x/β)p+q
, x > 0, (3)

and f (x; p, q, β) = 0 if x < 0, where p, q, β > 0 and
B(p, q) =

Γ (p)Γ (q)
Γ (p+q) denotes the beta function. This random variable

corresponds to the Pearson VI distribution in the classical Pearson
systems of distributions and we write X ∼ B2(p, q, λ). If we set
p = 1 in (3), we obtain a Pareto distribution P a(q, β) like (1).

The beta distribution of the second kind has a simple stochastic
representation as a ratio of gamma random variables. As a direct
extension of Lemma 1, if Up and Uq are independent gamma
random variables, the new random variable X = β

Up
Uq

has the pdf
defined in (3).

3. The multivariate Pareto class

Now we present the class of multivariate dependent Pareto
distribution which will be used in the different models.

In the literature several classes of multivariate Pareto distribu-
tions have been proposed. One of the main classes was introduced
by Arnold (1983, 2015), in the context of the hierarchy Pareto dis-
tributions proposed by this author. Other classes were proposed
by Chiragiev and Landsman (2009) and Asimit et al. (2010). The

conditional dependence structure is the base of the construction
of the proposals by Arnold (1987) and Arnold et al. (1993) (see also
Arnold et al., 2001), where two different dependent classes are ob-
tained.

Definition 1. Let Y1, Y2, . . . , Yn and Yα be mutually independent
gamma random variables with distributions Yi ∼ Ga(1), i =

1, 2, . . . , n and Yα ∼ Ga(α) with α > 0. The multivariate depen-
dent Pareto distribution is defined by the stochastic representa-
tion,

X = (X1, X2, . . . , Xn)
⊤

=


β
Y1

Yα
, β

Y2

Yα
, . . . , β

Yn

Yα

⊤

, (4)

where β > 0.
Note that the common random variable Yα introduces the

dependence in the model.

3.1. Properties of the multivariate Pareto class

We describe several properties of the multivariate Pareto
defined in (4).
• Marginal distributions. By construction, the marginal distribu-

tions are Pareto,

Xi ∼ P a(α, β), i = 1, 2, . . . , n.
• The joint pdf of the vector X is given by,

f (x1, . . . , xn;α, n) =
Γ (α + n)
Γ (α)βn

1
1 +

n
i=1

xi/β
α+n ,

x1, . . . , xn > 0. (5)
This expression corresponds to the joint pdf of the multivariate
Pareto type II proposed by Arnold (1983, 2015).

• The covariance is given by,

cov(Xi, Xj) =
β2

(α − 1)2(α − 2)
, α > 2, i ≠ j

and the correlation between components is,

ρ(Xi, Xj) =
1
α
, α > 2, i ≠ j.

• General moments. The moments of (1) are,

E(X r1
1 · · · X rn

n ) =
Γ (α − A)
Γ (α)

n
i=1

βriΓ (1 + ri),

where A = r1 + · · · + rm and α > A.
The dependence structure of X is studied in the following result

Proposition 1. The random variables X = (X1, . . . , Xn)
⊤ are asso-

ciated, and then cov(Xi, Xj) ≥ 0, if i ≠ j.
Proof. See Appendix. �

Remark. Let us consider the multivariate Pareto survival function
of (5) given by,

F̄(x1, . . . , xn) =


1 +

n
i=1

xi
β

−α

, x1, . . . , xn > 0,

with α, β > 0. For this family, the associated copula is the Pareto
copula or Clayton copula,

C(u1, . . . , un;α) =


u−1/α
1 + · · · + u−1/α

n − n + 1
−α

.

Note that the dependence increases with α, being the indepen-
dence case obtained when α → 0 and the Fréchet upper bound
when α → ∞.
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