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a b s t r a c t

This paper investigates the impact of relative performance concerns on the longevity risk transfermarket.
When an insurer concerns about the relative performance in a two-insurer economy, she maximizes the
expected utility of her terminal wealth benchmarked against her competitor’s. The problem formulation
for a general utility, a general interest rate process and cointegrated mortality rates uses a nonzero
sum stochastic differential game approach. Explicit solution of the Nash equilibrium is derived for
constant relative risk adverse insurers under the Vasicek-type stochastic interest and mortality rates.
Existence and uniqueness of the Nash equilibrium are established for the CIR-type models, which rule
out negative interest and mortality rates. While previous studies based on the single-agent approaches
have shown a high investment demand in longevity bonds, the launch of it was unsuccessful in reality.
Ours supplements that the demand is much lower subject to the relative performance concerns.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

While the prolonged life expectancy is beneficial for individuals
and the society, it is the financial risk for the government,
insurers and pension funds. Longevitymarket is needed to transfer
and share the risk with the public as well as creating profits
and diversification opportunities. The International Monetary
Fund (IMF, 2012) highly recommends the development a liquid
longevity risk transfer market to strengthen the stability of
sovereign balance sheets. Investment banks have been interested
in making the longevity market and LifeMetrics is a typical
quantitative toolkit developed by JP Morgan to measuring and
managing longevity risk (Loeys et al., 2007).

Longevity securitization includes structuring mortality-based
securities such as the survivor swaps (Dowd et al., 2006) and the
longevity bonds (Blake et al., 2006). For example, a zero-coupon
longevity bond pays the holder the face value times the percentage
of survivors in a population upon maturity. It offers a yield higher
than the risk-free interest rate to compensate for themortality risk.
Assuming a liquid longevity market, theoretical results have been
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developed for longevity riskmanagementwith longevity securities
such as Menoncin (2008), Cairns et al. (2014), Wong et al. (2014),
Wong et al. (2015) and Biagini et al. (2015).

While the longevity risk transfer market is important for
pension providers to hedge against the longevity risk, is it
beneficial to other investors? A liquid market is a consequence
of trading incentives of both purchasing and selling the securities
in the market. The literature addresses this issue through the
optimal consumption and investment problems with mortality
contingent claims. Farhi and Panageas (2007), and Dybvig and
Liu (2010) study the optimal consumption and portfolio choice
for a finite-lived representative agent using a stochastic optimal
control framework. By adding longevity securities into the analysis,
a significant demand of longevity bonds to hedge against the
shocks of life expectancy is shown in Cocco and Gomes (2012)
using a representative agent approach. By calibrating to the US
females population, the optimal consumption/investment model
in Menoncin and Regis (2015) further confirms that the demand
for longevity bonds is significant for this population even after
controlling the sensitivities of risk aversion and other parameters.
Maurer et al. (2013) assess the importance of variable annuities in
smoothing consumption.

In reality, the launch of longevity securities is much less
successful than theoretical models predict. In 2004, the European
Investment Bank announced plans to issue the first longevity bond
but it was withdrawn in late 2005 without being issued, primarily

http://dx.doi.org/10.1016/j.insmatheco.2016.10.005
0167-6687/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.insmatheco.2016.10.005
http://www.elsevier.com/locate/ime
http://www.elsevier.com/locate/ime
http://crossmark.crossref.org/dialog/?doi=10.1016/j.insmatheco.2016.10.005&domain=pdf
mailto:hywong@cuhk.edu.hk
http://dx.doi.org/10.1016/j.insmatheco.2016.10.005


354 K.Y. Kwok et al. / Insurance: Mathematics and Economics 71 (2016) 353–366

because the pension industry perceived the price of coverage on
longevity risk too high. Blake et al. (2013) suggest some important
ingredients for a liquid life market, including the optimal contract
design. A consultative document by the Bank for International
Settlements (BIS) in BIS Joint Forum (2013) addresses obstacles and
potentials for the development of the longevity markets.

The classical analysis of the demand on longevity securities
and/or optimal contract design stems on the single representative
agent’s decision for the entire economy. However, financial
institutions primarily concern with their performances relative
to their competitors (DeMarzo et al., 2008). The corresponding
optimal equilibriumdecision is closely related to financial bubbles,
which the approach of representative agent fails to address. A
tractable framework is proposed in Espinosa and Touzi (2015)
to model the interaction among heterogeneous agents under the
Brownian motion framework. Applying this concept to a two-
person game in insurance, Bensoussan et al. (2014) investigate
the optimal investment–reinsurance decision by formulating the
problem as a nonzero sum stochastic differential game. Pun
et al. (2016) generalize their result to the case of ambiguous
correlation using the framework of Fouque et al. (2016). The
present paper explores the optimal longevity investment under the
relative performance concerns and examines the implication for
the demand of longevity bonds.

Specifically, we consider two insurers who aim to optimally
allocate their wealth among a longevity bond, a risk-free bond and
the bank account. Each insurer is subject to a random insurance
liability following a doubly stochastic Poisson process, with an
intensity rate being correlated and cointegrated with the index
mortality rate underlying the longevity bond. Each of the two
insurers wishes to beat the other by maximizing the expected
utility on a relative wealth. This two-person optimization problem
leads to a nonzero sum stochastic differential game. Their optimal
investment is the Nash equilibrium of the game upon existence of
the solution.

We first characterize the problem under the general theoretical
setup. Specific results are then derived for two different market
conditions: Deterministicmarket price of riskwith Vasicek setting,
and volatility driven market price of risk with the extended CIR
setting. Both are considered in Wong et al. (2015). Under the
first market condition, we derive the explicit solution of the
Nash equilibrium strategies and the optimal objective function
for the constant relative risk adverse (CRRA) insurers. The explicit
solution enables us to examine insurers’ equilibrium demand
on longevity bonds under relative performance concerns. Under
the second market condition, explicit solution is not available
so that we prove for the existence and uniqueness of the
Nash equilibrium and devise a numerical implementation in our
numerical demonstration section.

Typically, individual insurer’s demand on longevity bond
increases with the degree of cointegration between her mortality
exposure and the mortality index. It articulates the important
role of cointegration in longevity security demand. However, the
insurer decreases her demand on longevity security when her
competitor’s portfolio is more cointegrated with the mortality
index. In other words, when the longevity market is in favor of the
risk management of the competitor’s portfolio through hedging,
the underlying insurer is intended to lower her participation in the
longevity market, and eventually reduces its liquidity, to maintain
her industrial ranking.

The contribution of this paper is twofold. Mathematically,
we formulate the optimal longevity investment decision under
the relative performance concerns as nonzero sum stochastic
differential games, and solve explicit solutions to somemeaningful
model settings. Specifically, the Nash equilibrium is shown to be
the solution of a pair of Hamilton–Jacobi–Bellman (HJB) equations

associated with a jump–diffusion model, where jumps are caused
by the risk processes of insurers. The unique Nash equilibrium is
obtained as a pair of explicit formulas for CRRA insurers under the
Vasicek setting. We prove existence and uniqueness for the Nash
equilibrium under the CIR setting.

Financially, our result offers new insights into the impact of
competition between insurers on the longevity market. While the
representative-agent approach suggests a significant investment
demand on longevity bonds, the actual demand could bemuch less
once insurers aim to beat their competitors. Consequently, insurers
reduce their demands on longevity bonds for maintaining their
industrial ranking once their core business is highly dependent
with the longevity bonds. This suggests that the optimal longevity
security design, which takes into account of relative performance
concerns, possess a very interesting future research.

The remainder of this paper is organized as follows. Section 2
presents the model and the framework of the nonzero sum
stochastic differential game. The solution process of the Nash
equilibrium is detailed in Section 4. Section 5 characterizes the
Nash equilibrium to some meaningful model settings. Section 6
provides the numerical examples of the two-person nonzero
sum game and draws financial interpretations from the model
parameters. Section 7 concludes the paper.

2. Problem formulation

This section begins with the interest rate and mortality rate
model with cointegration, which are the building block for
longevity bond pricing and the wealth processes of insurers. We
then present the problem formulation of the optimal longevity
investment for insurers under the relative performance concerns.

2.1. The stochastic model

Let (Ω, F , {Ft}t≥0, P) be a complete filtered probability space
and [0, T0] be the planing horizon, with 0 < T0 < T < ∞,
with T be the maturity of the risk-free interest rate and zero
coupon longevity bonds. Ft is the σ -field generated by the n-
dimensional standard Brownian motion {Wi(t)}ni=1 under P. In
our problem, it involves a stochastic interest rate and at least
three stochastic mortality rates, therefore n ≥ 4. Specially,
W (t) = (Wr(t),Wλ0(t),Wλ1(t),Wλ2(t))

′ is a vector of indepen-
dent Wiener processes under P.

Consider an economy of two insurers who aim to optimally
allocate their wealths among a bank account, a zero-coupon risk-
free bond and a zero-coupon longevity bond. The Ft-adapted risk-
free interest rate is the rate of return of the bank deposit such
that dB(t) = r(t)B(t)dt and B(0) = 1, where B(t) is the bank
deposit amount at time t . Hence, B(t) = exp

 t
0 r(s)ds


. Although

a more general model for the interest rate is possible, we use the
following stochastic differential equation (SDE) for the interest rate
dynamics.

dr(t) = (βr − αr r(t))dt + σr(t, r(t))dW (t), (1)

with deterministic βr and αr , and a R4-valued function σr(t, r(t))′.
The stochastic interest rate makes the zero coupon bond

different from the bank account. A zero coupon bond paying $1 at
maturity T reads

B(t, T ) = EP

exp


−

 T

t
r(s) + µB(s)ds

  Ft


= EQ


exp


−

 T

t
r(s)ds

  Ft


, (2)

where Q is the risk-neutral measure and µB(t) is the Ft-adapted
excess rate of return implied by the interest rate term structure.
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