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a b s t r a c t

Time-consistent valuations (i.e. pricing operators) can be created by backward iteration of one-period
valuations. In this paper we investigate the continuous-time limits of well-known actuarial premium
principles when such backward iteration procedures are applied. This method is applied to an insurance
risk process in the form of a diffusion process and a jump process in order to capture the heavy
tailed nature of insurance liabilities. We show that in the case of the diffusion process, the one-period
time-consistent Variance premium principle converges to the non-linear exponential indifference price.
Furthermore,we show that the Standard-Deviation and the Cost-of-Capital principle converge to the same
price limit. Adding the jump risk gives a more realistic picture of the price. Furthermore, we no longer
observe that the different premium principles converge to the same limit since each principle reflects the
effect of the jumpdifferently. In theCost-of-Capital principle, in particular theVaRoperator fails to capture
the jump risk for small jump probabilities, and the time-consistent price depends on the distribution of
the premium jump.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Standard actuarial premium principles usually consider a
static premium calculation problem: what is today’s price of an
insurance contract with payoff at time T . Textbooks such as those
by Bühlmann (1970), Gerber (1979), and Kaas et al. (2008) provide
examples of this. The study of riskmeasures and the closely related
concept of monetary riskmeasures have also been studied in static
settings by authors such as Artzner et al. (1999) and Cheridito
et al. (2005). The study of utility indifference valuations hasmainly
confined itself to static settings as well. Different applications can
be found in papers by Young and Zariphopoulou (2002), Henderson
(2002), Hobson (2004), Musiela and Zariphopoulou (2004) and
Monoyios (2006), and the book by Carmona (2009).

Financial pricing usually considers a ‘‘dynamic’’ pricing prob-
lem, and looks at how the price evolves over time until the final
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payoff date T . This dynamic perspective is driven by the focus on
hedging and replication. The literature was started by the seminal
paper of Black and Scholes (1973) and has been immensely gener-
alized to broad classes of securities and stochastic processes; see
Delbaen and Schachermayer (1994). Some researches in the last
twodecades focus on combining actuarial and financial pricing. See
for example, Wang (2002) where he used distortion risk measures
to price both types of risks andGoovaerts and Laeven (2008)where
they used actuarial risk measures to price financial derivatives.

In recent years, researchers have begun to investigate riskmea-
sures in a dynamic setting, where the question of constructing
time-consistent (or ‘‘dynamic’’) risk measures has been investi-
gated. See Riedel (2004), Cheridito et al. (2006), Roorda et al.
(2005), Rosazza Gianin (2006), and Artzner et al. (2007). As an ex-
ample, Stadje (2010) showed how a large class of dynamic con-
vex risk measures in continuous-time can be derived from the
limit of their discrete time versions. Moreover, Jobert and Rogers
(2008) showed how time-consistent valuations can be constructed
through the backward induction of static one-period riskmeasures
(or ‘‘valuations’’). And later, Pelsser and Stadje (2014) studied time
and market consistency of the well-known actuarial principles in
a dynamic setting by using a two-step valuation method.

Insurance risk can be modeled in a stochastic way by us-
ing a diffusion process. However, it is usual that insurance risks
exhibit jump type movements in their evolution, and the data
usually contain a number of extreme events and stylized facts
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usually exist such as fat-tailed and skewed distributions. This jus-
tifies the usage of a jump component to draw a realistic inference
about the dynamic pricing framework. Merton (1976) introduced
the jump–diffusion model to price options by assuming discon-
tinuity in returns. The model was developed extensively for fi-
nancial modeling, actuarial valuation and the pricing of different
derivatives and contingent claims in incompletemarkets. There are
numerous works about the jump process in finance; see for ex-
ample Cont and Tankov (2012). For an introduction to the applica-
tion of diffusion and jump processes in insurance see, for example,
Korn et al. (2010) and for more specific actuarial applications see
Biffis (2005), Verrall and Wüthrich (2012), Chen and Cox (2009),
and Jang (2007). Some researchers have generalized the concept of
time-consistent dynamic risk measures by using jump–diffusion
processes when underlying risks include jumps. See for exam-
ple Bion-Nadal (2008). The idea was developed in actuarial valu-
ation using Backward Stochastic Differential Equations (BSDE) and
g-expectations asmorepowerful tools to dealwithnon-linear pric-
ing operators such as different premium principles. There are also
a number of studies about modeling jumps with BSDEs in valua-
tion and portfolio choice. See for example the textbook by Delong
(2013) and the paper by Laeven and Stadje (2014).

In this paper we investigate well-known actuarial premium
principles such as the Variance principle and the Standard-
Deviation principle, and we study their time-consistent exten-
sion. We first consider one-period valuations, then extend this to a
multi-period setting using the backward iterationmethod of Jobert
and Rogers (2008) for a given discrete time-step (t, t + 1t), and
finally consider the continuous-time limit for1t → 0. Amore gen-
eral setting to model the insurance risk could be ‘‘infinite activity
Lévy process’’ where it allows for infinite number of jumps for any
finite time interval. However, as it does not seem realistic for an in-
surance process to have infinite number of jumpswhen (t, t +1t)
is infinitesimally small, we waive the infinite activity Lévy process
and we focus on investigating the method with simple diffusion
and jump–diffusion processes.

We apply backward iteration to a simple diffusion model to
show that the one-period Variance premium principle converges
to the non-linear exponential indifference valuation. Furthermore,
we study the continuous-time limit of the one-period Standard-
Deviation principle and the Cost-of-Capital principle, and establish
that in the diffusion setting, they converge to the same limit rep-
resented by an expectation under an equivalent martingale mea-
sure. We apply the same approach to the jump–diffusion setting
and show that the time-consistent prices for different premium
principles in the limit converge to different results than in the dif-
fusion case. We mainly used the infinitesimal generator together
with Itô’s formula for different forms of the premiumwith the un-
derlying process y(t) in both diffusion and jump–diffusion mod-
els. See for example the book by Shreve (2010) about martingales
and Itô’s formula and the book by Øksendal (2003) for infinites-
imal generators. As an exception, in the Cost-of-Capital principle
under the jump setting, we have to make inference about the dis-
tribution of the insurance process under VaR operator. To do so, we
will assume the jump process as a special case of the Lévy process
and find its characteristic function. To get more insight about the
Lévy process and its applications, see for example Figueroa-López
(2012) and the textbook by Barndorff-Nielsen et al. (2001). We ap-
ply thismethod to a health process to price a stylized life insurance
product andweuse aMarkov chain approximation to discretize the
time and state space of the underlying insurance process. See for
example Kushner and Dupuis (2001), Duan et al. (2003), and Tang
and Li (2007) for the idea of using a Markov chain approximation
to price contingent payoffs in theory and application.

The rest of this paper is organized as follows. In Section 2
we define the time-consistent valuation operators and explain

about the backward iteration method used to construct it. In Sec-
tion 3 we derive the time-consistent extension of the Variance
premium principle with and without discounting. Section 3 also
includes a benchmark version of this premium and theMean Value
principle as a more general pricing rule. In Section 4, we derive
the time-consistent value of the Standard-Deviation and Cost-of-
Capital premium principles. In both sections, we assume that the
underlying pure insurance risks follow a diffusion process and we
represent the results by means of the related Partial Differential
Equation (PDE). In Section 5, we assume that the underlying pro-
cess includes a Poisson jump component and we derive the time-
consistent value for the principles (that we used in Sections 3 and
4) in the form of the Partial Integro-Differential Equations (PIDEs).
In Section 6, we provide an example of the pricing procedure for
a stylized insurance product using the Markov chain method and
show the convergence of the numerical algorithm to analytical so-
lution. We summarize and conclude in Section 7.

2. Time-consistent valuation operators

Let (Ω,F ,P) be the underlying probability space and X(ω)
and Y (ω) be the stochastic insurance risk processes defined over
the σ -algebra F . Indexing for the time 0 ≤ t ≤ T , we form the
filtration Ft as the collection of the σ -algebras. In this paper, we
limit ourselves to the square integrable functions and denote the
space of such random variables as L 2(Ω,Ft ,P).

Time consistency postulates that the order of riskiness of
different portfolios measured by a dynamic risk measure in the
future time is consistent with their riskiness at any time prior to
that point in time and remains the same. It suggests that if at any
time t the position A forms a higher risk than position B, the level
of risk will be higher for all s < t . The next definition formulates
the time consistency of a risk measure.

Definition 2.1. A dynamic risk measure (ρt) is Time-Consistent if
and only if, for all 0 ≤ t ≤ T and ∀X, Y ∈ L2(Ft),

ρT (X) ≤ ρT (Y ) P-a.s. ⇒ ρt(X) ≤ ρt(Y ) P-a.s. (2.1)

or equivalently by its ‘‘recursive’’ form for∀s = 1t, 21t, . . . , T−t ,
we have ρt = ρt(−ρt+s),

where ρt : L 2(FT ) → L 2(Ft) is a conditional riskmeasure for all
T ≥ t . The definition for non-negative risks (e.g. insurance losses)
then becomes,

ρt = ρt(ρt+s). (2.2)

Similar notions of time consistency can be found in Föllmer and
Penner (2006), Cheridito and Stadje (2009), and Acciaio and Penner
(2011).

We construct the time-consistent valuation operators for the
insurance risks by the recursive form (2.2) and we use the
backward induction method introduced by Jobert and Rogers
(2008). In general we assume that the insurance process evolves
during the time period [0, T ] and that atmaturity time T it falls into
a bounded state space where we can also define the state space of
the contingent payoff. Based on this method, time consistency can
be achieved for the price operator by decomposing the valuation
operator into a family of one-period pricing operators that can only
be valuated in shorter intermediate time periods.

To derive the time-consistent actuarial value at the present time
t = 0, we divide the valuation period [0, T ] into a discrete set
{0,1t, 21t, . . . , T −1t, T } so that we can perform amulti-period
valuation by applying the one-period pricing operator to all sub-
intervals denoted by (t, t + 1t). We use well-known actuarial
premium principles such as the Variance, Standard-Deviation and
Cost-of-Capital principles as pricing operators. Our aim is to apply
the backward iteration method to all subintervals (t, t + 1t)
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