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a b s t r a c t

Modeling mortality co-movements for multiple populations have significant implications for mortal-
ity/longevity riskmanagement. A few two-populationmortalitymodels have been proposed to date. They
are typically based on the assumption that the forecasted mortality experiences of two or more related
populations converge in the long run. This assumption might be justified by the long-term mortality co-
integration and thus be applicable to longevity risk modeling. However, it seems too strong to model the
short-term mortality dependence. In this paper, we propose a two-stage procedure based on the time
series analysis and a factor copula approach to model mortality dependence for multiple populations. In
the first stage, we filter the mortality dynamics of each population using an ARMA–GARCH process with
heavy-tailed innovations. In the second stage, wemodel the residual risk using a one-factor copula model
that is widely applicable to high dimension data and very flexible in terms of model specification. We
then illustrate how to use our mortality model and the maximum entropy approach for mortality risk
pricing and hedging. Our model generates par spreads that are very close to the actual spreads of the Vita
IIImortality bond.We also propose a longevity trend bond and demonstrate how to use this bond to hedge
residual longevity risk of an insurer with both annuity and life books of business.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a few mortality models with multiple popu-
lations have been proposed and developed. Modeling mortality
dependence for two or more populations is still, however, in its in-
fancy. Multi-population mortality models are typically structured
assuming that the forecastedmortality experiences of two ormore
related populations are linked together and do not diverge over
the long run. This assumption might be justified by the long-term
mortality co-movements and thus be applicable to longevity risk
modeling. It seems, however, too strong an assumption to use in
modeling short-term mortality dependence. Here, we propose a
copula-basedmultivariatemodel to capturemortality dependence
for multiple populations. In the first stage, we filter the mortal-
ity dynamics of each population using the ARMA–GARCH process
with heavy-tailed innovations. In the second stage, we model the
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residual risk using a one-factor copula model that is widely appli-
cable to high dimension data. We then use our mortality model to
price the Swiss Re Vita III bond and a longevity bond in the spirit of
the Kortis bond to analyze the hedging problem of an insurer with
both life and annuity books of business.

In order to have a thorough assessment of mortality/longevity
risk, the correlation or co-integration between mortality improve-
ments of different populations have to be evaluated. Cairns et al.
(2011) provide a detailed discussion on why correlations among
multiple populations must be taken into account. First, from the
natural hedging perspective, a typical life insurer may want to
hedge mortality risk from insured lives with longevity risk from
annuitants. These two insured groups, however, may have dif-
ferent but correlated patterns of mortality experience. Second,
sometimes the mortality data may not be available or sufficiently
reliable for a small population due to a small number of deaths,
a limited number of calendar years of data, age range or simply
poor quality of data, thus causing highly inaccurate parameter es-
timates. Jointly modeling the small population and a larger linked
population allows the small-population mortality forecasts to be
consistentwith those of the larger population. Third,with the rapid
development of mortality securitizations, the payoffs of almost
all mortality bonds are contingent on a weighted mortality index
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based on multiple populations.1 We need to understand mortality
correlations in order to better evaluate the overall risk and the fi-
nal payoff to investors. Last but not least, entities seeking to hedge
their exposures tomortality/longevity risk using capital market in-
struments need to determine hedge ratios that minimize basis risk
between their own population and the population associated with
the hedging instruments.

A few two-population stochastic mortality models have been
proposed. Li and Lee (2005) present an augmented common factor
model for a group of populations, imposing a common mortality
change by age but allowing each its own age pattern and level
of mortality. Li and Hardy (2011) consider four extensions to
the Lee–Carter model to incorporate mortality dependence. Dowd
et al. (2011) develop a gravity mortality model for two-related
but different sized populations, where gravity effects bring the
state variables of the small population toward those of the large
population in a manner consistent with biological reasonableness.
A similar model was developed by Jarner and Kryger (2011). Cairns
et al. (2011) introduce a general framework for two-population
mortality modeling; they employ a mean-reverting process that
permits different short-run trends in mortality rates but parallel
long-run improvements. Zhou et al. (2013a) propose a two-
population Lee–Carter model with transitory jumps under this
framework. Yang and Wang (2013) and Zhou et al. (2013b) apply
a co-integration analysis to investigate the long-run equilibrium
in multi-country mortality data and use a vector error correction
model (VECM) for mortality forecasts. A common feature of these
models is that they are constructed in a way that mortality
forecasts in different populations do not diverge in the long run.
This assumption might be justified by the long-term mortality co-
movements and so be applicable to longevity risk modeling, but it
seems too strong to model the short-term mortality dependence.

Lin et al. (2013) develop a jump diffusion mortality model for
multiple countries where mortality dependence comes from com-
mon jumps and the correlation between idiosyncratic risks. Their
approach focuses on analyzing correlations among the raw mor-
tality data but the raw data exhibit noise such as autocorrelation
or volatility clustering that could possibly confound the depen-
dence structure. Their approach also entails the use of normalized
multivariate exponential tilting to price the risks and that implic-
itly assumes that the risks follow a Gaussian copula. We believe
this is problematic since Gaussian copulas lack tail dependence
and are therefore inadequate to model the joint mortality events.
Our approach is related to Lin et al. (2013), but our model uses a
two-stage multivariate analysis based on a factor copula approach
which overcomes the problems noted here and has other advan-
tages that we subsequently discuss.

Our mortality model has two stages. The first stage estimates
the conditional distribution of mortality rates for each population.
In the seminal work of Lee and Carter (1992), an ARIMA model is
used to forecast the time varying mortality factor. They assume
that the error terms are white noise with zero mean and a
small constant volatility; that assumption of homoscedasticity,
however, is not realistic. Lee and Miller (2001) argue that the
observed logarithm of central death rates is quite variable and the
volatility is time varying. Recently, GARCH-related models have
been used to model mortality rates (see, e.g. Gao and Hu, 2009;
Giacometti et al., 2012; Chai et al., 2013). Along with this line
of research, we use an ARMA–GARCH model to fit the mortality
data of each population in order to remove autocorrelation and
conditional heteroskedasticity from mortality time series. Instead

1 There are only two exceptions, i.e., the Tartan mortality bond sponsored by
Scottish Re in 2006 and the Atlas IX mortality bond sponsored by SCOR Re in 2013.
Their payoffs depend on US mortality data only.

ofmodelingmorality jumps explicitly, we assume that innovations
follow a heavy-tailed distribution. This is supported by empirical
evidence provided in Giacometti et al. (2009, 2012) and Wang
et al. (2013). Giacometti et al. (2009) observe that for some age
groups the Lee–Carter model with normal inverse Gaussian (NIG)
innovations produces a dominant fit compared to the Gaussian
one. Giacometti et al. (2012) find that an AR–ARCH model with
Student-t innovations is more suited to Italian data. Wang et al.
(2013) conclude that the Renshaw and Haberman (2006) model
with non-Gaussian innovations generates better forecasts for
England and Wales, France, and Italy.

The second stage of our model is designed to capture mortality
dependence among residuals revealed by the first stage. A very
common and intuitive way to capture the dependence is to use
copulas. Copulas have been studied in both actuarial science
and finance to examine dependencies among risks (Frees and
Valdez, 1998; Embrechts et al., 2003). Particularly, in mortality
studies copulas have been applied to model the bivariate survival
function of the two lives of couples (see, e.g. Frees et al., 1996;
Carriere, 2000; Shemyakin and Youn, 2006; Youn and Shemyakin,
1999, 2001; Denuit et al., 2001). Surprisingly, we find no prior
research using copula models in the multi-population mortality
analysis. In addition, the majority of aforementioned papers use
copulas in the Elliptical or Archimedean family, which usually
have only one or two parameters to characterize the dependence
between all variables, and are thus quite restrictive when the
number of variables increases. To overcome this drawback and
increase the flexibility of our model, we adopt factor copula
models proposed by Oh and Patton (2014).2 Their model has some
advantages. First, it is based on a simple linear, additive factor
structure for the copula and is particularly attractive for high
dimension applications. Second, the factor copula permits separate
development of the marginal distributions and the copula model.
Hence, this method allows the use of any existing model for the
univariate analysiswith the subsequent focus on the copulamodel.
Third, the factor copula provides more flexibility of the model
according to the number of variables and available data. To the best
of our knowledge, our model is the first to use the factor copula to
fit mortality data for multiple populations.3

Pricing mortality-linked derivatives is challenging in an in-
complete market. With sparse market price data, some prevalent
pricing methodologies, such as the arbitrage free pricing method
(Cairns et al., 2006; Bauer et al., 2010), theWang transform (Dowd
et al., 2006; Denuit et al., 2007; Lin and Cox, 2008; Chen and Cox,
2009), or the Esscher transform (Chen et al., 2010; Li et al., 2010),
require the user to make one or more subjective assumptions to
derive the market prices of risk. The pricing process becomes even
more difficult when multiple risks are involved. For this reason, Li
(2010), Kogure and Kurachi (2010) and Li and Ng (2011) advocate
the use of the maximum entropy approach that ‘‘does not strictly
require the use of security prices to predict other security prices’’.
This is particularly important in today’s market where there are
a limited number of market participants and only a few mortality

2 A one-factor copula model was first introduced in Vasicek (1987) to evaluate
loan loss distributions and Li (2000) applies the Gaussian copula to multi-name
credit derivatives. The model is generalized in Andersen and Sidenius (2004), Hull
and White (2004), and Laurent and Gregory (2005). Extending Hull and White
(2004)’s work, Oh and Patton (2014) use factor copula models to capture the
dependence among firms in the S&P 100. Their paper presents a ‘‘simulatedmethod
of moments’’ approach to accommodate this high dimensional data.
3 At the same time this article was written, Wang et al. (2013) proposed a two-

stage procedure which is very similar to our model. They use an ARMA process in
the first stage and time-varying copulas in the Elliptical or Archimedean family in
the second stage.
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