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a b s t r a c t

We propose the use of statistical emulators for the purpose of analyzing mortality-linked contracts
in stochastic mortality models. Such models typically require (nested) evaluation of expected values
of nonlinear functionals of multi-dimensional stochastic processes. Except in the simplest cases, no
closed-form expressions are available, necessitating numerical approximation. To complement various
analytic approximations, we advocate the use of modern statistical tools from machine learning to
generate a flexible, non-parametric surrogate for the true mappings. This method allows performance
guarantees regarding approximation accuracy and removes the need for nested simulation. We illustrate
our approach with case studies involving (i) a Lee–Carter model with mortality shocks; (ii) index-based
static hedging with longevity basis risk; (iii) a Cairns–Blake–Dowd stochastic survival probability model;
(iv) variable annuities under stochastic interest rate and mortality.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Longevity risk has emerged as a key research topic in the past
two decades. Since the seminal work of Lee and Carter (1992)
there has been a particular interest in building stochastic models
of mortality. Stochastic mortality allows for generation of a range
of future longevity forecasts, and permits the modeler to pinpoint
sources of randomness, so as to better quantify respective risk.
Longevity modeling calls for a marriage between the statistical
problem of calibration, i.e. fitting to past mortality data, and the
financial problem of pricing and hedging future longevity risk.
At its core, the latter problem reduces to computing expected
values of certain functionals of the underlying stochastic processes.
For example, the survival probability for t years for an individual
currently aged x can be expressed as a functional

P(t, x) = E

exp


−

 t

0
µ(s, x + s) ds


, (1)

whereµ(s, x+ s) is the force of mortality at date s for an individual
aged x + s. In the stochastic mortality paradigm µ(s, x + s) is ran-
dom for s > 0, and so one is necessarily confronted with the need
to evaluate the corresponding expectations on the right-hand-side
of (1).

The past decade has witnessed a strong trend towards
complexity in both components of (1). On the one hand, driven
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by the desire to provide faithful fits (and forecasts) to existing
mortality data, increasingly complex mortality models for µ(t, x)
have been proposed. The latest generation ofmodels featuremulti-
dimensional, nonlinear stochastic state processes driving µ(·, x),
see e.g. Cairns et al. (2009), Li et al. (2009), Lin et al. (2013),
Barrieu et al. (2012) and Fushimi and Kogure (2014). These models
are effective at calibration and emitting informative forecasts, but
lack tractability in terms of closed-form formulas. On the other
hand, sophisticated insurance products, such as variable annuities
or longevity swap derivatives make valuation and hedging highly
nontrivial, and typically call for numerical approaches, as closed-
form formulas are not available, see e.g. Bacinello et al. (2011)
and Qian et al. (2010). Taken together, pricing of mortality-linked
contracts becomes a complex system, feeding multi-dimensional
stochastic inputs through a ‘‘black box’’ that eventually outputs net
present value of the claim.

These developments have created a tension between the
complexity of mortality models that do not admit explicit
computations and the need to price, hedge and risk manage
complicated contracts based on suchmodels. Due to this challenge,
there remains a gap between the academic mortality modeling
and the implemented models by the longevity risk practitioners.
Because the aforementioned valuation black box is analytically
intractable, there is a growing reliance on Monte Carlo simulation
tools, which in turn is accompanied by exploding computational
needs. For example, many emerging problems require nested
simulationswhich can easily take days to complete. Similarly,many
portfolios containmillions of heterogeneous products (see, e.g. Gan
and Lin, 2015) that must be accurately priced and managed.
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In this article we propose to apply modern statistical methods
to address this issue. Our approach is to bridge between the
mortalitymodeling and the desired pricing/hedging needs through
an intermediate statistical emulator. The emulator provides a
computationally efficient, high-fidelity surrogate to the actual
mortality model. Moreover, the emulator converts a calibrated
opaque mortality model into a user-friendly valuation ‘‘app’’.
The resulting toolbox allows a plug-and-play strategy, so that
the end user who is in charge of pricing/risk-management can
straightforwardly swap onemortalitymodel for another, or one set
of mortality parameters for an alternative. This modular approach
allows a flexible solution to robustify the model-based longevity
risk by facilitating comparisons of different longevity dynamics
and different assumptions.

Use of emulators is a natural solution to handle complex un-
derlying stochastic simulators and has become commonplace in
the simulation and machine learning communities (Santner et al.,
2003; Kleijnen, 2007). Below we propose to apply such statistical
learningwithin the novel context of insurance applications. In con-
trast to traditional (generalized) linear models, emulation calls for
fully nonparametricmodels, which are less familiar to actuaries. To
fix ideas, in this article we pursue the problem of pricing/hedging
vanilla life annuities, a foundational task in life insurance and pen-
sion planmanagement. Except in the simplest settings, there are no
explicit formulas for annuity values and consequently approxima-
tion techniques are already commonplace. Looking more broadly,
our method would also be pertinent for computing risk measures,
such as Expected Shortfall for longevity products, and in other ac-
tuarial contexts, see Section 8.

The paper is organized as follows: In Section 2 we introduce
the emulation problem and review the mathematical framework
of stochastic mortality. Section 3 discusses the construction of
emulators, including spline and kriging surrogates, as well as
generation of training designs and simulation budgeting. The
second half of the paper then presents four extended case studies
on several stochastic mortality models that have been put forth
in the literature. In Section 4 we examine a Lee–Carter model
with mortality shocks that was proposed by Chen and Cox (2009);
Section 5 studies approximation of hedge portfolio values in
a two-population model based on the recent work by Cairns
et al. (2014). Section 6 considers valuation of deferred annuities
under a Cairns–Blake–Dowd (CBD) (Cairns et al., 2006) mortality
framework. Lastly, in Section 7 we consider variable annuities and
their future distributions for riskmeasure analysis, using stochastic
interest rate and the Lee–Carter framework.

2. Emulation objective

We consider a stochastic system with Markov state process
Z = (Z(t)). Throughout the paper we will identify Z with the
underlying stochastic mortality factors. In Section 2.2 we review
some of the existing such models and explicit the respective
structure of Z . Typically, Z is a multivariate stochastic process
based on either a stochastic differential equation or time-series
ARIMA frameworks. For example, Z may be of diffusion-type or an
auto-regressive process.

In the inference step, the dynamics of Z are calibrated to past
mortality data that reflect as closely as possible the population
of interest. In the ensuing valuation step, the modeler seeks
to evaluate certain quantities related to a functional F(T , Z(·))
looking into the future. Here F maps the stochastic factors
to the present value of a life insurance product at a future
date T , or alternatively the actuarially fair value of a deferred
contract, common in longevity risk, that starts at T . Our notation

furthermore indicates that F potentially depends on the whole
path {Z(t), t ≥ T }, such as

F(T , Z(·)) = exp

−

∞
t=T

h(Z(t))

, (2)

for some h(z). Given F , a common aim is to compute its expected
value based on the initial data at t = 0,

E [F(T , Z(·)) | Z(0)] . (3)

Another key problem is to evaluate the quantile q(α; F(T , Z(·))),
eg. the Value-at-Risk at level α of F . Other quantities of inter-
est in actuarial applications include the Expected Shortfall of F ,
E[F(T , Z(·)) | F(T , Z(·)) ≤ q(α; F(T , Z(·))), Z(0)] and the correla-
tion between two functionals, Corr(F1(T , Z(·)), F2(T , Z(·))|Z(0)).

Our initial focus is on (3) which is a fundamental quantity in
pricing/hedging problems. When T > 0, the evaluation of (3) can
be broken into two steps, namely first we evaluate

f (z) .
= E[F(T , Z(·))|Z(T ) = z], (4)

and then use the Markov property of Z to carry out an outer
average,

E[F(T , Z(·))|Z(0)] =


Rd

f (z)pT (z|Z(0))dz,

where pT (z ′
|z) = P(Z(T ) = z ′

|Z(0) = z) is the transition density
of Z over [0, T ]. In addition to computing expected values from
point of view of t = 0, computation of f (z) is also necessary for
analyzing the distribution of future loss in terms of underlying risk
factors, e.g. for risk measurement purposes.

Crucially, because the form of F(T , Z(·)) is nontrivial, we shall
assume that f (z) is not available explicitly, and there is no simple
way to describe its functional form. However, since f (z) is a con-
ditional expectation, it can be sampled using a simulator, i.e. the
modeler has access to an engine that can generate independent,
identically distributed samples F(T , Z (n)(·)), n = 1, . . . , given
Z(0). However this simulator is assumed to be expensive, imply-
ing that computational efficiency is desired in using it.

Given an initial state Z(0), a naive Monte Carlo approach to
evaluate (3) is based on nested simulation. First, the outer integral
over pT (z|Z(0)) is replaced by an empirical average of (4) across
m = 1, . . . ,Nout draws z(m)

∼ Z(T )|Z(0),

E[F(T , Z(·))|Z(0)] ≃
1

Nout

Nout
m=1

f (z(m)). (5)

Second, for each z(m) the corresponding inner expected value
f (z(m)) is further approximated via

f (z(m)) ≃
1
Nin

Nin
n=1

F(T , z(m),n(·)), m = 1, . . . ,Nout , (6)

where z(m),n(t), t ≥ T are Nin independent trajectories of Z with
a fixed starting point z(m),n(T ) = z(m). This nested approach offers
an unbiased but expensive estimate. Indeed, the total simulation
budget is O(Nout · Nin) (where the usual big-O notation h(x) =

O(x) means that h(·) is asymptotically linear in x as x → ∞)
which can be computationally intensive—for example a budget of
1000 at each sub-step requires 106 total simulations. As stochastic
mortality models become more complex, models with d =

3, 4, 5+ factors are frequently proposed, and efficiency issues
become central to the ability of evaluating (3) tractably.

For this reason, it is desirable to construct more frugal schemes
for approximating (3). The main idea is to replace the inner step of
repeatedly evaluating f (z) (possibly for some very similar values
of z) with a simpler alternative. One strategy is to construct
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