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a b s t r a c t

Theoretical models applied to option pricing should take into account the empirical characteristics of
financial time series. In this paper, we show how to price basket options when the underlying asset prices
follow a displaced log-normal process with jumps, capable of accommodating negative skewness and
excess kurtosis. Our technique involves Hermite polynomial expansion that can match exactly the firstm
moments of themodel-implied basket return. Thismethod is shown to provide superior results for basket
options not only with respect to pricing but also for hedging.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Basket options are contingent claims on a group of assets such
as equities, commodities, currencies and even other vanilla deriva-
tives. They are a subclass of exotic options and commonly traded
over-the-counter in order to hedge away exposure to correlation
or contagion risk. Additionally, they are also employed by hedge-
funds for investment purposes, to combine diversification with
leverage.

Baskets consist of several assets and, consequently, any mod-
elling ought to be multidimensional. Many pricing models that
seem to work well for single assets cannot be easily extended to
a multidimensional set-up, mainly due to computational difficul-
ties. The major problem is that in many cases the probability den-
sity function of the basket values at expiration is not known.Hence,
practitioners usually resort to classic multidimensional geometric
Brownian motion type models to keep the modelling framework
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as simple as possible. However, by doing so, the computational
problems are not completely solved because the probability den-
sity function of the sum of log-normal variables is not known and
additionally the empirical characteristics of the assets in the basket
are simply overlooked. In particular, the negative skewness and ex-
cess kurtosis, which are well known to characterize equities, can-
not be captured properly by these simple models because they can
produce a limited range of values for these statistics.

Ideally, one would like the best of both worlds, realistic mod-
elling and precise calculations. In this paper, we present a general
computational solution to the problem of multidimensional mod-
els lacking closed-form formulae or requiring burdensome numer-
ical procedures. The purpose of this paper is to provide a robust and
precise methodology for pricing and hedging basket options when
the price of each of the assets in the basket follows a model able
to accommodate the empirical characteristics. One such model is
the displaced jump–diffusion which will be used as test subject to
show the superiority of the presented methodology. This model is
very useful for the dynamics of one asset, but expanding the set-
up to a basket of assets leads to computational problems related to
the calculation of the probability distribution of the basket price.
Therefore, we circumvent this problem by employing a Hermite
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polynomial expansionmatching exactly the firstmmoments of the
model-implied basket return.

The pricing and hedging methodology we propose consists of
quasi-analytical formulae: they are Black and Scholes type formu-
lae and some of their inputs are given as the solution of a system
of m equations in m unknowns. The main advantages of the new
methodology are: low computational cost compared to numerical
methods, especially when one prices a portfolio of options writ-
ten on the same basket with different strikes and/or payoffs, since
the matching procedure needs to be carried out only once; precise
calculations and the availability of formulae for the Greeks. Addi-
tionally, the only prerequisite of our method is the existence of the
moments of the basket and, consequently, it is applicable to the sit-
uation when some assets in the basket follow one diffusion model
and other assets follow a different diffusion model.

The remaining of the article is structured as follows. Section 2
reviews the existing literature on pricing and hedging basket
options. Section 3describes the continuous-timemodels employed
here. The new methodology is discussed in Section 4 and a
numerical comparison is presented in Section 5. The final section
concludes.

2. Existing contributions

The number of papers covering basket options has increased
considerably in the last three decades. The available methods can
be classified into analytical, purely numerical and a hybrid quasi-
analytical class which is based on various expansions andmoment
matching techniques. Our method belongs to the last category.

By analogy to early papers on pricing Asian options, Gen-
tle (1993) proposed pricing basket options by approximating the
arithmetic weighted average with its geometrical-average coun-
terpart so that a Black–Scholes type formula could be applied.
Korn and Zeytun (2013) improved this approximation using the
fact that, if the spot prices of assets in the basket are shifted by
a large scalar constant C , their arithmetic and geometric means
converge asymptotically. They consider log-normally distributed
assets and approximate the C-shifted distribution by standard log-
normal distributions. Kirk (1995) developed a technique for pricing
a spread option by coupling the asset with negative weight with
the strike price, considering their combination as one asset having
a shifted distribution and then employing theMargrabe (1978) for-
mula for exchanging two assets. Themethods in Li et al. (2008) and
Li et al. (2010) extended the procedure proposed in Kirk (1995) to
the case of multi-asset spread options. Curran (1994) priced bas-
ket options with only positive weights by conditioning on the ge-
ometric basket value: the resulting formula is given as an exact
term plus an approximated term. Deelstra et al. (2004, 2010) ex-
tended on Curran (1994) and obtained lower and upper bounds
for the prices of basket options and Asian basket options, respec-
tively. Similarly, Xu and Zheng (2009) derived bounds for basket
options on assets following a jump–diffusion model with idiosyn-
cratic and systematic jumps. A completely different approach has
been proposed by Laurence and Wang (2004, 2005), and Hobson
et al. (2005b,a). They derived model-free upper and lower bounds
for basket option prices based on the prices of the European op-
tions, each on a single-asset. While the literature on pricing basket
options is large, there is sparse research on calculating the hedg-
ing parameters for basket options. A notable exception is Hurd and
Zhou (2010) who priced spread options and derived the Greek pa-
rameters by using fast Fourier transform under different models.

When analytical formulae are difficult to be derived under a
particular model, it is common, in the finance industry, to resort to
Monte Carlomethods. Control variate techniques for pricing basket
options are described in Pellizzari (2001) and Korn and Zeytun
(2013). While Monte Carlo methods offer a feasible solution,

the computational cost may be too high even for standard-size
baskets commonly traded on the financial markets. Hence, the
majority of the literature on basket option pricing gravitates
around approximation methods that circumvent the numerical
problems generated by the high-dimensionality of basket models.
Levy (1992) approximated the distribution of a basket bymatching
its first two moments with the moments of a log-normal density
function, and then derived a Black–Scholes type pricing formula.
Other works modified the log-normal approximation allowing
for improved skewness and kurtosis calibration. Borovkova et al.
(2007) have proposed a new methodology that can incorporate
negative skewness while still retaining analytical tractability,
under a shifted log-normal distribution, by considering the entire
basket as one single asset.1 This strong assumption allows the
derivation of closed-form formulae for basket option pricing. On
the other hand, some other research has priced basket options
whose asset dynamics are more appropriate to accommodate
the empirical characteristics of the asset returns. Flamouris and
Giamouridis (2007) priced basket options on assets following a
Bernoulli jump–diffusion process using the Edgeworth expansion;
Wu et al. (2009) assumed that asset prices follow the multivariate
normal inverse Gaussian model (mNIG) and employed the fast
Fourier transform together with the methodology outlined by
Milevsky and Posner (1998) to approximate the sum of assets
following the mNIGs model as a mNIG; Xu and Zheng (2009)
priced correlated local volatility jump–diffusion model deriving
the Partial Integro Differential Equation (PIDE) driving the basket
and approximating it via the asymptotic expansion method. Bae
et al. (2011) priced basket options (with positiveweights) on assets
following a jump–diffusion process by using the Taylor expansion
method of Ju (2002).

The technique we propose in this paper approximates the bas-
ket return at the optionmaturity by anHermite polynomial expan-
sion of a standard normal variable. This aims to solve the problems
encountered by existing pricing approaches that employ polyno-
mial expansions to approximate the probability density function of
the basket values (see Dionne et al., 2006, among others). In par-
ticular, thesemethods provide valid approximations only for a lim-
ited set of skewness–kurtosis pairs. Themain advantage of our new
methodology over these previous approaches is that the matching
of the moments is exact for a wider set of skewness–kurtosis set.

3. The modelling framework

From a modelling point of view, it would be more appropriate
for the assets in the basket to follow models that are capable of
generating negative skewness and excess kurtosis reflecting the
empirical evidence in equity markets. One such flexible model is
the displaced (or shifted) jump–diffusion, that is a jump–diffusion
process for the displaced or shifted asset value, similar to themodel
discussed by Câmara et al. (2009). In the following, we define the
modelling framework.

Consider the filtered probability space2 (Ω, F , (Ft)0≤t≤T , P).
Let us define, on this space, the financial market consisting of the
asset price processes S(i), i = 1, . . . , Υ and the bank account
Mt = ert that can be used to borrow and deposit money with
continuously compounded interest rate r ≥ 0, assumed constant

1 Brigo et al. (2004) proposed a similar method to that of Borovkova et al. (2007)
but their method can cope only with positive-value baskets.
2 The results in this section are proved both in Câmara et al. (2009) and in Shreve

(2004, chap. 11.5). In the latter, the standard multidimensional jump–diffusion
model is described and the theory can be adapted to deal with shifted assets.
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