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a b s t r a c t

The present paper proposes an evolutionary credibility model that describes the joint dynamics of
mortality through time in several populations. Instead of modeling the mortality rate levels, the time
series of population-specific mortality rate changes, or mortality improvement rates are considered and
expressed in terms of correlated time factors, up to an error term. Dynamic random effects ensure the
necessary smoothing across time, as well as the learning effect. They also serve to stabilize successive
mortality projection outputs, avoiding dramatic changes from one year to the next. Statistical inference
is based on maximum likelihood, properly recognizing the random, hidden nature of underlying time
factors. Empirical illustrations demonstrate the practical interest of the approach proposed in the present
paper.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Mortality forecasts are used in a wide variety of fields. Let
us mention health policy making, pharmaceutical research, social
security, retirement fund planning and life insurance, to name just
a few.

Following the elegant approach to mortality forecasting pio-
neered by Lee and Carter (1992) many projection models decom-
pose the death rates (on the logarithmic scale) or the one-year
death probabilities (on the logit scale) into a linear combination of
a limited number of time factors. See, e.g., Hunt and Blake (2014).
In a first step, regression techniques are used to extract the time
factors from the available mortality data. In a second step, the time
factors are intrinsically viewed as forming a time series to be pro-
jected to the future. The actual age-specific death rates are then
derived from this forecast using the estimated age effects. This in
turn yields projected life expectancies.

In the first step of the two-step model calibration procedure,
the random nature of the unobservable time factor is disregarded,
and this may bias the analysis. As possible incoherence may arise
from this two-step procedure, Czado et al. (2005) integrated both
steps into a Bayesian version of the model developed by Lee and
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Carter (1992) in order to avoid this deficiency. After Czado et al.
(2005) and Pedroza (2006) formulated the Lee–Carter method as
a state-space model, using Gaussian error terms and a random
walk with drift for the mortality index. See also Girosi and King
(2008), Kogure et al. (2009), Kogure and Kurachi (2010) and Li
(2014) for related works. However, the practical implementation
of Bayesian methods often requires computer-intensive Markov
Chain Monte Carlo (MCMC) simulations. This is why we propose
in this paper a simple credibility model ensuring robustness over
time while keeping the computational issues relatively easy and
allowing for the flexibility of time series modeling. It is worth
stressing that the time factor is here treated as such, and not as
a parameter to be estimated from past mortality statistics using
regression techniques before entering time series models. In this
way, we recognize the hidden nature of the time factor and its
intrinsic randomness.

Whereas most mortality studies consider both genders sepa-
rately, the model proposed in this paper easily combines male and
female mortality statistics. This is particularly useful in practice
when both genders are usually involved. In insurance applications,
for instance, separate analyses could lead to miss this strong de-
pendence pattern, which considerably reduces possible diversifi-
cation effects between male and female policyholders inside the
portfolio. In demographic projections, combining male and female
data is necessary to ensure consistency in gender-specific mortal-
ity forecast. This problem has been considered by several authors
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in the literature. Let us mention Carter and Lee (1992) who fitted
the Lee and Carter (1992) model to male and female populations
separately and then measured the dependence between the two
gender-specific time factors. These authors considered three mod-
els for the pair of time factors: a bivariate random walk with drift,
a single time factor common to both genders and a co-integrated
processwhere themale index follows a randomwalkwith drift and
there exists a stationary linear combination of both time factors.

More generally, the credibility model proposed in this paper
is able to pool several populations to produce mortality forecasts
for a group of countries. In such a context, Yang and Wang (2013)
assumed that the time factors followed a vector error correction
model. See also Zhou et al. (2013). Other models incorporate a
common factor for the combined population as a whole, as well
as additional factors for each sub-population. The common factor
describes the main long-term trend in mortality change while
the additional factors depict the short-term discrepancy from the
main trend inside each sub-population. See Li and Lee (2005)
who proposed the augmented common factor model generalized
by Li (2013) to several factors. The model structure proposed in
Delwarde et al. (2006), by Debón et al. (2011), and by Russolillo
et al. (2011) only includes a single, common time factor. As argued
in Carter and Lee (1992), this simple arrangement may enforce
greater consistency and is a parsimonious way to model both
populations jointly. However, it also implies that the death rates of
the two populations are perfectly associated, an assumption with
far-reaching consequences in risk management.

Our paper innovates in that the newmulti-populationmortality
projection model we propose is based on mortality improvement
rates instead of levels. Recently, several authors suggested to
target improvement rates to forecast future mortality, instead of
the death rates. While the time dependence structure of death
rate models is dominated by the continuing downward trend, the
improvement rates are already trend adjusted. See, e.g., Mitchell
et al. (2013) or Börger and Aleksic (2014). The model developed
in this paper appears to be useful for studying securitization
mechanisms, as shown by the Kortis bond issued by Swiss Re in
2010. The payoff of this first longevity trend bond is linked to the
divergence inmortality improvement rates between two countries
(US and UK) and thus nicely fits our proposed model.

Furthermore, the model is fitted properly, recognizing the
hidden nature of time factors which are not treated as unknown
parameters to be estimated from the mortality data. Mortality
projections are derived by means of the predictive distribution
of the time index, i.e. its a posteriori distribution given past
observations. This is the credibility feature of the proposed
approach. New data feed this predictive distribution as they
become available and so help to update mortality projections. This
recognizes the dynamic aspect of mortality forecasting and avoids
re-fitting the entire model based on new data. To the best of our
knowledge, this dynamic updating approach has not been used
so far and our numerical illustrations demonstrate its advantages
compared to classical frequentist approaches.

The remainder of this paper is organized as follows. Section 2
gives a short introduction to evolutionary credibility models.
Section 3 carefully presents the credibility model proposed to
project future mortality. In Section 4, we discuss the covariance
structure of the model and address the identifiability problem the
modelmay encounter. Section 5 describes a two-stepmodel fitting
concept, which studies period and age effects separately. Section 6
is devoted to empirical illustrations. First, we fit the mortality
experience of the G5 countries using our proposed methodology.
Then, we study the index governing the payoff of the Swiss
Re Kortis bond. Finally, we perform successive forecasts for the
Belgian population to illustrate how newly available data can be
incorporated in revised forecasts. We compare the results to the
official forecasts published yearly by the Federal Planning Bureau,
the Belgian agency in charge of mortality projections.

2. Evolutionary credibility models

Following the book of Bühlmann and Gisler (2005) and focusing
on the aspects thatwill be needed later on, this section gives a short
introduction to evolutionary credibility modeling.

Consider a time series (rt ,Θt)t∈N with a w-variate stochastic
observation process (rt)t∈N and a v-variate stochastic state (or risk
profile) process (Θt)t∈N on a probability space (Ω,F , P). The state
process (Θt) is unobservable but shall follow a known dynamics.
We are now at time T ∈ N and the aim is to predict future
states ΘT+k, k ∈ N, and conditional future expected observations
E[rT+k | ΘT+k], k ∈ N. The past observations r1, . . . , rT are the
available information at time T .

Let all (rt ,Θt), t ∈ N be square integrable. Then the credibility
estimator forΘT+k, given the observations till time T , is defined as
the orthogonal projection

µT+k|T := Pro (ΘT+k | L(1, r1, . . . , rT )) (2.1)

with respect to the set

L(1, r1, . . . , rT ) :=


a +

T
t=1

At rt : a ∈ Rv, At ∈ Rv,w


in the Hilbert space of square integrable random variables. In
other words, µT+k|T is the unique element in the linear space
L(1, r1, . . . , rT ) that satisfies

E[(µT+k|T −ΘT+k)(X −ΘT+k)] = 0 for all X ∈ L(1, r1, . . . , rT ).

So µT+k|T is the best linear predictor of ΘT+k in terms of
1, r1, . . . , rT .

Furthermore, (rt ,Θt) is assumed to have a state-space repre-
sentation of the form

rt = GΘt + Wt , (2.2)
Θt+1 = FΘt + Vt (2.3)

with G ∈ Rw,v, F ∈ Rv,v and white noise processes (Wt) and (Vt).
The two white noise processes shall be serially uncorrelated and
also uncorrelated with each other. Their joint covariance matrix
thus has the structure

Cov


Vt
Wt


,


Vs
Ws


=


Q 0
0 R


, (2.4)

Q ∈ Rv,v and R ∈ Rw,w , if t = s and zero else.
Under all these assumptions, the credibility estimator µT+k|T

for ΘT+k can be calculated in a recursive way, see Theorem 10.3
in Bühlmann and Gisler (2005). Starting from an initial value
µ1|0 = E[Θ1], the estimate is sequentially updated by the newest
observation through the recursive formula

µt|t = µt|t−1 + At(rt − Gµt|t−1) (2.5)

for an appropriate matrix At . The step from t to t + 1 then follows
the evolution rule (2.3), i.e.

µt+1|t = Fµt|t . (2.6)

The credibility estimator µT+1|T is obtained by iterating this
procedure for t = 1, . . . , T . Finally, µT+k|T and the credibility
estimator for E[rT+k | ΘT+k] = GΘT+k are given by

µT+k|T = F k−1µT+1|T ,

Pro (GΘT+k | L(1, r1, . . . , rT )) = GµT+k|T ,

respectively. This formula is also known as the Kalman recursion
or the Kalman filter algorithm, cf. Brockwell and Davis (2006), and
is implemented in the statistical software R.

A particular example of a stochastic process that can be
expressed as an evolutionary credibilitymodel is an autoregressive
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