
Insurance: Mathematics and Economics 69 (2016) 138–148

Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Applications of central limit theorems for equity-linked insurance
Runhuan Feng a,∗, Yasutaka Shimizu b

a Department of Mathematics, University of Illinois at Urbana–Champaign, United States
b Department of Applied Mathematics, Waseda University, Japan

a r t i c l e i n f o

Article history:
Received December 2015
Received in revised form
April 2016
Accepted 12 May 2016
Available online 19 May 2016

Keywords:
Equity-linked insurance
Variable annuity guaranteed benefits
Risk measures
Strong law of large numbers
Central limit theorem
Individual model
Aggregate model

a b s t r a c t

In both the past literature and industrial practice, itwas often implicitly usedwithout any justification that
the classical strong law of large numbers applies to the modeling of equity-linked insurance. However,
as all policyholders’ benefits are linked to common equity indices or funds, the classical assumption of
independent claims is clearly inappropriate for equity-linked insurance. In other words, the strong law of
large numbers fails to apply in the classical sense. In this paper, we investigate this fundamental question
regarding the validity of strong laws of large numbers for equity-linked insurance. As a result, extensions
of classical laws of large numbers and central limit theorem are presented, which are shown to apply to
a great variety of equity-linked insurance products.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the most fundamental principles for the insurance
business is the pooling of funds from a large number of
policyholders to pay for losses that a few policyholders incur. The
mathematics behind such a business model is the law of large
numbers which dictates that actual average loss would be close to
the theoretical mean of loss with a large pool of homogeneous and
independent risks. Take for example a traditional pure endowment
life insurance that pays a lump sumof B dollars upon survival at the
end of T years. Suppose that an insurer sells identical policies to n
policyholders all ofwho are of the same age x.We denote the future
lifetime of the ith policyholder by τ

(i)
x and the survival probability

by Tpx := P(τ
(i)
x > T ). Even though there is uncertainty to each

contract with regard to whether the policyholder survives at time
T , the strong law of large numbers implies that the percentage
of survivorship is almost certain and so is the average benefit
payment for each contract, i.e.

1
n

n
i=1

BI(τ (i)
x ≥ T ) −→ E[BI(τ (1)

x ≥ T )] = BTpx, n → ∞.
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Simply put, this is the scientific ground of the insurance practice
of pricing and reserving, which mandate a fixed amount of liquid
asset on the aggregate level to pay for seemingly uncertain benefits
on individual basis. In other words, the mortality risks involved
in all individual contracts are diversified through the pooling of a
large number of homogeneous contracts.

The past fewdecades have seen the rapid growthof investment-
combined insurance products, which allow policyholders to reap
the benefits of equity investment on their premiums. Insurers
around the world have developed a variety of equity-linked
insurance. However, this market innovation brought financial
risks into insurance contracts, in conjunction with traditional
mortality risk. Since policy benefits are often linked to the same
equity-indices or funds, there is no diversification of financial
risks amongst each cohort of policyholders. If the equity market
performs poorly, there is an erosion of policy values to all contracts
at the same time. From the viewpoint of statistics, the individual
policy benefits are no longer independent random variables and
hence classical laws of large numbers do not apply.

Nevertheless, it is fairly common both in practice and in the
actuarial literature that mortality risks are implicitly assumed to
be diversified in premium and reserve calculations for equity-
linked insurance. See examples in Sections 3.2 and 4.1–4.3. Is there
any theoretical basis of such a widely used assumption? In this
paper, we intend to address this question and explore various
sets of assumptions under which the law of large numbers can
be extended to equity-linked insurance. In Section 2, we provide
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a concrete example to quantify and analyze the interaction of
mortality and financial risks. We extend laws of large numbers
to a general framework of survival benefits in Section 3 and to
that of death benefits in Section 4. We conclude the paper with
a numerical example for the central limit theorem result and its
application to the calculation of risk measures.

2. Guaranteed minimummaturity benefit

In this section, we take the guaranteedminimummaturity ben-
efit (GMMB) as a model example, although similar results can also
be obtained for all other types of equity-linked insurance to be in-
troduced in later sections. In Feng and Volkmer (2012), the net lia-
bility of theGMMB is defined to be thepresent value of future outgo
less the present value of future incomeon a standalone contract ba-
sis.We shall describe the cost and benefit of theGMMB rider for the
sake of completeness. Let L(τ (i)), i ∈ {1, 2, . . . , n} be the GMMB
net liability for the ith policyholder. Assume all policyholdersmake
the same amount of initial purchase payment at the policy issue
(this assumption will be loosen in the next section). Denote the
guaranteed maturity benefit by G and the evolution of investment
accounts by {Ft : t ≥ 0}, which is modeled by some stochas-
tic process on the probability space (Ω, F , P, {Ft : t ≥ 0}).
Throughout the paper, we assume {Ft : t ≥ 0} to be a non-
negative process. Rider fees and charges are collected continuously
as a fixed percentage me of the account values. Let r be the annual
yield rate on bonds backing up the liabilities. The GMMB rider is an
equity-linked insurance analog of the traditional pure endowment
insurance. It offers a policyholder the greater of a minimum value
and account value, should the policyholder survive the maturity T .
Since the bulk of the guaranteed amount G comes out of the poli-
cyholder’s own investment account, the out-of-pocket cost of the
GMMB rider for the insurer is determined by

e−rT (G − FT )+I(τ (i)
x > T ),

where (x)+ = max{x, 0}. To compensate for the GMMB liability,
the insurer receives a continuous flow of fee incomes until the ear-
lier of policyholder’s death and the maturity, the present value of
which is given by T∧τ

(i)
x

0
e−rsmeFs ds.

Then the present value of individual net liability (gross liability less
fee income) is given by

L(τ (i)) := e−rT (G − FT )+I(τ (i)
x > T )

−

 T∧τ
(i)
x

0
e−rsmeFs ds. (1)

It was also shown in Feng (2014) that the actual model used by
practitioners through spreadsheet calculations is the average net
liability model

L∗
:= E


L(τ (i))

FT


= Tpxe−rT (G − FT )+

−

 T

0
spxe−rsmeFs ds. (2)

Observe that there are two sources of randomness, namely τ
(i)
x and

{Ft : t ≥ 0} in the formulation of net liability in (1), whereas only
financial risk is present in the formulation of net liability in (2). Be-
fore discussing the connection between these two types ofmodels,
we digress to investigate the effect on the tail behavior of undiver-
sifiable risks.

Let us consider a set of n pairwise symmetric random variables,
i.e. (Xi, Xj) has the same distribution for all i, j = 1, . . . , n. Note

that Xi and Xj do not need to be independent. The pairwise symme-
try is equivalent to the statement that (X1, . . . , Xi−1, Xi+1, . . . , Xn)
has the same distribution as (X1, . . . , Xj−1, Xj+1, . . . , Xn) for any
i, j = 1, . . . , n.

Proposition 2.1. Let {X1, X2, . . .} be a set of pairwise symmetric
random variables. For any positive integer n,

1
n + 1

n+1
i=1

Xi ≤cx
1
n

n
i=1

Xi, (3)

where X ≤cx Y means that Eg(X) ≤ Eg(Y ) for any convex function
g.

Proof. For any convex function g , observe that

E


g


1

n + 1

n+1
i=1

Xi


= E


g


1

n + 1

n+1
i=1

1
n

n+1
j=1,j≠i

Xj


.

Applying Jensen’s inequality to a discrete random variable, we can
show that for any convex function g and x1, x2, . . . , xn ∈ R,

1
n

n
i=1

g(xi) ≥ g


1
n

n
i=1

xi


.

Therefore,

E


g


1

n + 1

n+1
i=1

1
n

n+1
j=1,j≠i

Xj



≤
1

n + 1

n+1
i=1

E


g


1
n

n+1
j=1,j≠i

Xj



=
1

n + 1

n+1
i=1

E


g


1
n

n
j=1

Xj


,

where the last equality follows from the fact that (X1, . . . , Xn) are
pairwise symmetric. Therefore,wehaveproved that for any convex
function g

E


g


1

n + 1

n+1
i=1

Xi


≤ E


g


1
n

n
j=1

Xj


,

which establishes the convex order in (3). �

It follows immediately that for p ∈ (0, 1) (cf. Dhaene et al.,
2006, Theorem 3.2),

TVaRp


1

n + 1

n+1
i=1

Xi


≤ TVaRp


1
n

n
i=1

Xi


.

The tail-value-at-risk of the average of n losses is a decreasing
function of the sample size n. In other words, the tail risk of
average loss can always be reduced by diversification through a
large pool of policies. When the components of X are independent,
then the strong law of large numbers implies that the limit of
TVaRp[(1/n)

n
j=1 Xj] is E[Xj] as n → ∞. However, this is not

true in general when the components are dependent, as in the case
of equity-linked insurance contracts. A discussion of systematic
versus diversifiable risks can be found in Busse et al. (2014) with
detailed numerical examples. The above provides a theoretical
justification of their observations. Denuit et al. (2005, Proposition
3.4.23) provides a special case of Proposition 2.1 which requires
the assumption of independent and identical distributed risks.

As alluded to earlier, individual net liabilities (L(τ (1)), L(τ (2)),
. . . , L(τ (n))) are not mutually independent. Hence it is critical for
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