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a b s t r a c t

In the present work we study the distribution of a random sum of random variables which is related to a
binary scan statistic for Markov dependent trials. The motivation of the model studied herein stems from
several areas of applied science such as actuarial science, financial risk management, quality control and
reliability, educational psychology, engineering, etc.

Let us consider a sequence of binary success/failure trials and denote by Tk thewaiting time for the first
occurrence of two successes separated by atmost k failures, where k ≥ 0 is any integer. Let also Y1, Y2, . . .
be a sequence of independent and identically distributed (i.i.d) discrete random variables, independent of
Tk. In the present article we develop some results for the distribution of the compound random variable
Sk =

Tk
t=1 Yt and illustrate how these results can be profitably used to study models pertaining to

actuarial science and financial risk management practice.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many problems encountered in a large number of applied
areas, may be modeled by the aid of dichotomous (binary)
variables taking on the values 1 (success, S) or 0 (failure, F ).
A popular random variable associated with sequences of binary
outcomes, is the number of trials till a predetermined criterion is
satisfied (stopping rule). In the classical model, the time between
successive trials is not taken into account; however, in most real-
life situations, the time between consecutive trials varies and
therefore should be treated as a random variable as well.

Motivated by the aforementioned observation, in the present
work we study a probability model with random times between
consecutive trials, and elucidate how it can be implemented
in problems arising in actuarial science and financial risk
management practice. Before proceeding to the formal definition
and analysis of the stochastic model we are going to deal with,
we present two specific examples emerging in the financial and
insurance industry which can be accommodated in the framework
we are focusing on.
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1.1. Insurance portfolio surveillance

Insurance industry has a long-standing relationship with risk.
The definition of the actuarial profession by the Institute of
Actuaries and the Faculty of Actuaries clearly states that it is the
responsibility of an actuary to manage assets and liabilities by
analyzing past events, assessing the present risk and modeling
what could happen in the future. One of the principal functions
of risk management in the insurance industry is to determine the
amount of capital a company needs to hold as a buffer against
unexpected future losses on its portfolio.

In the classical aggregate lossmodel used in insurance analytics,
the interest focuses on the total loss amount over a fixed time
period [0, t]. Apparently the number of losses over that period is
a random variable, say N (t), and the individual losses X1, X2, . . .
should also be treated as random variables. The aggregate loss can
then be expressed as a random sum of the form St =

N(t)
i=1 Xi.

Departing from the classical setup, let us look at a framework
that can be used by an insurance company to create a surveillance
mechanism over a specific portfolio it holds. Let us denote by
X1, X2, . . . the individual claim sizes arriving at the company. An
unexpected future loss, defined by the aid of a threshold x0, could
be used as a warning for an approaching high risk situation for the
company.

Apparently, the series of outcomes generated over time by
the aforementioned process may be modeled by the aid of a
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sequence of binary variables ξ1, ξ2, . . . taking on the values 1
(success, S) or 0 (failure, F ) where 1 designates an unexpected
loss (i.e. a loss exceeding x0) and 0 a loss that is smaller than x0.
Assuming independence between successive claims, the sequence
ξ1, ξ2, . . . turns out to be a sequence of Bernoulli trialswith success
probability p = P [ξt = 1] = P [Xt > x0] and failure probability
q = P [ξt = 0] = P [Xt ≤ x0]. A plausible criterion to confer that
a high risk situation is approaching for the insurance company
would be to observe at least two successes (unexpected losses) that
are very close to each other, e.g. when an outcome of the form SS,
SFS, SFFS occurs.

The aforementioned model can be accommodated in the next
more general setup. Let ξ1, ξ2, . . . be an infinite sequence of binary
outcomes anddenote by Tk thewaiting time for the first occurrence
of two successes separated by atmost k failures (k is a non-negative
integer). Clearly, Tk counts the number of trials required to observe

for the first time one of the patterns SS, SFS, . . . , S

k  
F · · · F S. Let

us now denote by Y1 the time when the first claim arrives and
by Yt the interarrival time between the (t − 1)th and tth claims
(t ≥ 2). Manifestly, the times when the unexpected losses occur
are random variables continuous or discrete (when a specific time
unit is used, e.g. day,month, etc.). Then the total time till a high risk
signal is created for the portfolio (i.e. because of the occurrence of
unexpected losses being very close to each other) will be described
by the random variable Sk =

Tk
t=1 Yt .

1.2. A financial risk management model

Assume that a bank is subject to a sequence of stress tests over
time. Using several indices related to the bank’s economical health,
the bank may be classified as appropriately functioning (low risk
of defaulting) or not. For example, it is widely recognized that
a bank’s capitalization is of utmost importance and provides the
main line of defense for absorbing unexpected losses; therefore it
may be used as an important risk measure signaling an oncoming
credit event, i.e. default. A measure of bank capitalization health
is provided by the Capital Ratio (CAR), which is defined as
(Tier1+ Tier2)/Risk-Weighted Assets. For regulatory purposes, the
Basel Accord has adopted a simple dichotomous classification that
characterizes a bank either as undercapitalized or not, depending
on whether its CAR falls below or above 8%; see e.g. Demstez et al.
(1996), Flannery and Sorescu (1996), Estrella et al. (2000), Goldberg
and Hudgins (2002), Lindquist (2004), Berger et al. (2008) and
Koutras and Drakos (2013).

Manifestly, the series of stress tests outcomes can be modeled
by the aid of a sequence of binary variables ξ1, ξ2, . . . taking on
the values 1 (success, S) or 0 (failure, F ) where 1 indicates an
undercapitalized bank (i.e. a bank that failed in the stress test)
and 0 a well-capitalized one. The sequence ξ1, ξ2, . . . may arise as
follows. Let Xt denote the CAR of the bank subject to the stress test
at time t , t = 1, 2, . . . . Adopting the Basel Accord dichotomous
classification we may consider that the bank failed the stress test
if Xt < 8% and therefore p = P [ξt = 1] = P [Xt < 0.08] and
q = P [ξt = 0] = P [Xt ≥ 0.08].

However, in this case the independence assumption made be-
fore for the sequence of binary outcomes cannot be substantiated,
since the values of ξt are determined by Xt , t = 1, 2, . . . which in
practice are not independent. In most cases, using past data, one
may easily verify that the stochastic behavior of a bank’s CAR (evo-
lution of the Xt ’s, t = 1, 2, . . .) can be adequately described by a
first orderMarkov dependent process. This is readily substantiated
by assuming thatXt depends on themagnitude of the previous cap-
italization Xt−1, an assumption which is quite realistic. In this case,
the outcomes ξt , t = 1, 2, . . . . of the stress tests form a sequence
of time-homogeneous two-state (0 − 1) Markov dependent trials.

Exploiting the same arguments as in the insurance portfolio
surveillance example, we may consider that a bank is susceptible
to default if it fails in two stress tests that are very close to each
other. Let us also assume that the times of the stress tests are
random; such a scenario seems reasonable in the case where we
wish randomness to prevent the bank from having information on
the stress test times. Denoting by Y1 the first stress test time and
by Yt the interarrival time between the (t − 1)th and tth stress
tests (t ≥ 2), the total time till a default signal is created for the
monitored bank will be described by the random variable Sk =Tk

t=1 Yt .
In the present article, we study the distribution of the statistic

Sk =
Tk

t=1 Yt arising in the previous examples. The random vari-
ables ξt , t = 1, 2, . . . which give birth to the enumerating random
variable Tk are assumed to be a sequence of time-homogeneous
two-state Markov dependent trials; the respective results for the
i.i.d. case are also derived as a special case of the Markov depen-
dence model. In Section 2 we introduce the definitions and no-
tations that will be used throughout the paper. In Section 3 we
give some results for the probability generating functions (pgf), the
moment generating functions (mgf) and the moments of the com-
pound scan statistic Sk =

Tk
t=1 Yt . Section 4 addresses the problem

of evaluating the probability mass function (pmf) of Sk in the case
where Yt ’s are discrete random variables.We indicate how one can
establish effective recursive schemes for the pmf of Sk and discuss
a method that leads to non-recursive schemes. Finally, in Section 5
we present some numerical results and illustrate how they can be
practically used in real-life applications.

2. Definitions, notations and preliminary material

Let ξ1, ξ2, . . . be an infinite sequence of binary outcomes and
denote by Tk the waiting time for the first occurrence of two
successes which are separated by at most k failures. Manifestly, Tk
counts the number of trials required to observe for the first time

one of the patterns SS, SFS, . . . , S

k  
F · · · F S.

The random variable Tk is a special case of a scan statistic, see
e.g. Boutsikas and Koutras (2002, 2006), Chen and Glaz (1997),
Fu et al. (2012), Glaz (1983), Glaz and Naus (1991), Greenberg
(1970), Koutras (1996), Koutras and Alexandrou (1995), Saperstein
(1973), Wu et al. (2013) or the excellent monograph by Glaz et al.
(2009). Note that, for k = 0 the random variable Tk is enumerating
success runs of length 2 and therefore it follows a geometric
distribution of order 2; the interested reader may consult the book
by Balakrishnan and Koutras (2002) for more details and results
relating to waiting times for runs and scans.

Let us next define another sequence of random variables
(either discrete or continuous) Y1, Y2, . . . , that are positive valued,
independent and identically distributed and independent of the
waiting time random variable Tk, as well. Let Y1 be thewaiting time
for the first occurrence of the event of interest, e.g. the arrival of a
claim at an insurance company or the implementation of a stress
test for a bank, etc.; in addition denote by Yt the interarrival time
between the (t − 1)th and tth occurrences of that event (t ≥ 2). In
the sequelwe shall proceed to a detailed study of the distribution of
the random variable Sk =

Tk
t=1 Yt which represents the total time

till the first occurrence of two successes which are separated by at
most k failures. Since Sk is a random sum of random variables and
thenumber of summands is determinedby a (simple) scan statistic,
we shall refer to in by the term compound scan statistic.

In the next sections we shall present several results for the
distribution of Sk under the assumption that the binary outcomes
ξt , t = 1, 2, . . . form a sequence of time-homogeneous two-state
(0 − 1) Markov dependent trials with P [ξt = j|ξt−1 = i] = pij for
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