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a b s t r a c t

It is well known that the presence of outlier events can overestimate or underestimate the overall reserve
when using the chain-ladder method. The lack of robustness of loss reserving estimators leads to the
development of this paper. The appearance of outlier events (including large claims—catastrophic events)
can offset the result of the ordinary chain ladder technique and perturb the reserving estimation. Our
proposal is to apply robust statistical procedures to the loss reserving estimation, which are insensitive
to the occurrence of outlier events in the data. This paper considers robust log-linear and ANOVAmodels
to the analysis of loss reserving by using different type of robust estimators, such as LAD-estimators,
M-estimators, LMS-estimators, LTS-estimators, MM-estimators (with initial S-estimate) and Adaptive-
estimators. Comparisons of these estimators are also presented, with application of a well known data
set.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction on loss reserving

The estimation of claim reserves and outstanding claims is
very important for the operation of insurance companies, as well
as for the determination of the profit. In the actuarial literature
there is a variety of papers on loss reserving techniques within
the chain ladder framework, namely, Kremer (1982), Taylor and
Ashe (1983), Mack (1991, 1993, 1994), Renshaw (1989), Verrall
(1991, 2000). The book by Taylor (2000) presents useful material
on stochastic methods and practical issues, in addition to several
deterministic loss reserving techniques. Furthermore, the review
paper of England and Verrall (2002), and the book ofWüthrich and
Merz (2008), provide a wide range of stochastic reservingmethods
for use in general insurance. Formore sophisticatedmodels on loss
reserving, such as generalized linear mixed models, see Antonio
and Beirlant (2007).

In this paper, we focus on ANOVA and log-linear models that
were introduced by Kremer (1982) and used by Renshaw (1989),
Verrall (1991), Zehnwirth (1985) and Christofides (1990), amongst
others. Verrall (1991) considered the estimation of claims reserves
and outstanding claims when a log-linear model is applied. He
based his results on a general theory of estimation from linear
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models, as was presented by Bradu and Mundlak (1970), when
the data is log-normally distributed. Christofides (1990) has shown
how run-off models of the log-incremental payments can be
identified and fitted in practice usingmultiple regression. The Log-
Normal distribution has the advantage that it can be implemented
without the need for specialist software. Another advantage is that
other statistical techniques can also be used to allow different
assumptions to be incorporated concerning the run-off pattern and
the connections between origin years.

1.1. The lack of robustness of loss reserving techniques

The presence of outliers due to large claims or catastrophic
events is a special problem in loss reserving calculation. Outliers
can be described as points which do not follow the trend of the
majority of the data. The problem appears if a trend (due to an
outlier event) that appeared in one of the development years in
a chain ladder setting carried on for the next years resulting in an
overestimation or underestimation of claims reserves.

In particular, excess claims (large claims) lead to an unsatisfac-
tory behavior of chain ladder methodology. Our purpose is to ro-
bustify the claims reserves calculations using robust estimators. In
simple regression (two-dimensional case), it is easy to detect out-
lier events just by plotting the observations. This is no longer possi-
ble in the log-linear multiple regression. So, in practice, one needs
a procedure that is able to lessen the impact of outliers.
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Kremer (1997) incorporated the ideas of robust statistics into
loss reserving techniques by using the lagfactor-method (or link-
ratio method). Verdonck et al. (2009) created a technique for
detecting outlying observations in a run-off triangle of claims
amounts and solved the problem of non-robustness of the chain
ladder by replacing the mean by the median. Verdonck and De-
bruyne (2011) based on the influence function approach presented
a diagnostic tool for highlighting the influence of every individual
claim on the classical chain-ladder estimates. They considered the
chain ladder method as generalized linear models (GLM) and ob-
tained robust estimates of GLM in a chain ladder framework. Busse
et al. (2010) designed a filter for outliers and large jumps, and pre-
sented a robust version of Mack’s variance estimator. They verified
the reliability of their methods with several loss triangles. Venter
and Tampubolon (2010) presented an introduction of robustmeth-
ods for loss reserving and compared development triangle based
on the sensitivity of the reserve estimates.

In this paper a class of robust estimators is applied to a chain
ladder procedure where the data is in a log linear form and that
was transformed into a two-way analysis of variance. This class of
estimators includes robust estimators that simultaneously attain
maximum breakdown point (BP) and full asymptotic efficiency
under error normality.

In our robust loss reserving estimation we initially ignore the
bias present due to the robustification of the large claims, but add
in a second stage, a share of the excess (correction term) to ulti-
mate claims, to obtain a final unbiasedness. This robust log-linear
regression estimation can provide quite well claims reserves esti-
mates by guaranteeing the recovery of ultimate claims. Of course,
these robust estimators can be embedded within several loss re-
serving techniques providing reliable claims reserves estimation.

The paper has been organized as follows. In Section 2, we
present a summary of some of the most important robust esti-
mators that appear in the statistical and actuarial literature. More
specifically, we present the LAD (or L1)-estimators, M-estimators,
LMS-estimators, LTS-estimators, MM-estimators (with initial
S-estimate) and Adaptive-estimators, in a way that can be used
to obtain robust chain ladder model estimation. In Section 3, we
briefly present two models that appeared in the literature and
are appropriate for the loss reserving techniques, the log-linear
model of Verrall (1991) and the two way model of ANOVA by Kre-
mer (1982). In Section 4, we provide robust estimators for Ver-
rall’s (1991) log-linear and Kremer’s (1982) ANOVA loss reserving
models. Numerical Illustrations are provided in Section 5 based on
Taylor and Ashe (1983) data and robust estimators applied to loss
reserving techniques. A comparison of robust loss reserving esti-
mations is also provided. Finally, an overview of the results and
some concluding remarks are presented in Section 6.

2. Robust inference

Very often, assumptions, made in statistics, i.e. normality, lin-
earity, independence are at most approximations of reality. Robust
regressionmodels are useful for filtering linear relationships when
the random variation in the data is not normal or when the data
contain significant outliers (see Hampel et al., 1986).

In the following we present a summary of some of the most
important robust estimators that appear in the statistical and
actuarial literature. Somebasic concepts of robust statistics are also
presented in Appendix A.

2.1. LAD and M-estimators

The idea of least absolute deviation (LAD) also known as L1
regression is actually older than that of least squares. Edgeworth in

1887 argued that outliers have a very large influence on LS because
the residuals ri are squared. The least absolute values regression
estimator is determined by

min
β̂

n
i=1

|ri|, (2.1)

where ri = yi − xTi β is the ith residual. Unfortunately the BP of L1
regression is no better than 0%. The BP of a regression estimator is
the largest proportion of the data which can be replaced by large
values (outlier events) before the estimator breaks down. As its
name implies, L1 regression finds the coefficients estimate that
minimizes the sum of the absolute values of the residuals.

M-estimators are generalization of maximum likelihood esti-
mator proposed by Huber (1973), who suggested that we obtain
M-estimators as solutions of the following minimization problem,

min
β̂

n
i=1

ρ (ri) , (2.2)

where ri is the ith residual, ρ is a symmetric function with unique
minimum at zero. Differentiating this expression with respect to
the regression coefficients β̂ yields,

n
i=1 ψ (ri) xi = 0, whereψ is

the derivative of ρ and xi is the row vector of explanatory variables
of the ith case. In practice one has to standardize the residuals by
means of some estimate of S, yielding

n
i=1

ψ
 ri
S


xi = 0, (2.3)

where S is a scale parameter and must be estimated simultane-
ously. In practice, it is advisable to use S = med{|ri|} as an initial
value.

The advantage of M-estimates is that they can be computed
in much less time than other robust estimates. The disadvantage
is that they are sensitive to high leverage points and they do not
enjoy high breakdown point (BP). The BP of M-estimators are 0%
(see Rousseeuw and Leroy, 1987, p. 145).

The location–scale M-estimators of β, with an appropriate
choice of ψ , may attain a high efficiency and at the same time
be robust against large residuals. But these estimators are not
robust to outliers in the design matrix space, i.e. if the explanatory
variables are random or otherwise subject to errors the classical
M-estimators may be unreliable. In this case the domain of the ψ
function has been enlarged to include the design points, as well as
the residuals.

The influence function of the Huber M-estimator (ignoring the
scale) is defined as

IF(xT , y; T , F) =
ψc(r)
Eψ ′

c(r)
(ExxT )−1x. (2.4)

The first part of the influence function in (2.4) is called the influence
of the residuals and is bounded, but the second part that is called
the influence of position in factor space is unbounded. Thus, a
single xi, which is an outlier in the factor space, will almost
completely determine the fit. In this case the Huber estimator and
all estimators defined through (2.3), including L1, are only the first
step in the robustification of the regression estimator (see Hampel
et al. (1986, p. 313)).

2.2. LMS estimators and LTS estimators

A robust equivariant regression estimator that first attained the
maximum asymptotic BP = 0.5 is the least median of squares
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