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a b s t r a c t

A State Price Density (SPD) is the density function of a risk neutral equivalent martingale measure for
option pricing, and is indispensable for exotic option pricing and portfolio risk management. Many ap-
proaches have been proposed in the last two decades to calibrate a SPD using financial options from the
bond and equity markets. Among these, non and semiparametric methods were preferred because they
can avoidmodelmis-specification of the underlying. However, thesemethods usually require a large data
set to achieve desired convergence properties. One faces the problem in estimation by e.g., kernel tech-
niques that there are not enough observations locally available. For this situation, we employ a Bayesian
quadrature method because it allows us to incorporate prior assumptions on the model parameters and
hence avoids problems with data sparsity. It is able to compute the SPD of both call and put options si-
multaneously, and is particularly robust when the market faces the data sparsity issue. As illustration, we
calibrate the SPD for weather derivatives, a classical example of incomplete markets with financial con-
tracts payoffs linked to non-tradable assets, namely, weather indices. Finally, we study related weather
derivatives data and the dynamics of the implied SPDs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A State Price Density (SPD) is the density function of a Risk
Neutral (RN) equivalent martingale measure for option pricing,
and it is a measure more tied to uncertainty than to volatility and
it is indispensable for (exotic) option pricing and portfolio risk
management. It does not only reflect a risk-adaptive behavior of
investors based on historical assessment of the futuresmarket, but
it also gives insights about the preferences and risk aversion of a
representative agent, see for example Aït-Sahalia and Lo (2000),
Jackwerth and Rubinstein (1996) and Rosenberg and Engle (2002).

Consider a European call option withmaturity date T and strike
price K . Under the non-arbitrage principle, its price at t can be
given as:

C(K) = e−rτ


max(x − K , 0)f (x)dx (1)

where r is the risk-free interest rate, τ time to maturity and f (x)
is the defined SPD. The advantage of extracting the SPD directly
frommarket prices is that volatility and other moments can easily
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be calculated using this SPD independent of any particular pricing
model.

There are many approaches to calibrate the SPD using financial
options from the bond and equity markets. Assuming a Black and
Scholes (B&S) model implies that the RN measure is a lognormal
distribution which may result in severe bias of the SPD estimation
since certain volatility properties are not correctly reflected. As
observed by Breeden and Litzenberger (1978), the SPD of any risky
asset can be derived as the second derivative with respect to the
strike price of an estimate of the pricing function C . A number
of econometric techniques have been developed to address this
calibration issue. Themost notable examples include the stochastic
volatility models and the GARCHmodels. Derman and Kani (1994),
Dupire (1994) and Rubinstein (1994) implied SPDs using binomial
trees, hence avoiding too strong stochasticity assumption like
e.g., Geometric Brownianmotion. Others like Abadir and Rockinger
(2003) use hypergeometric distributions. Although useful in a
variety of contexts, these (parametric) models are still susceptible
to model specification.

Various non-parametric models have been employed to over-
come this problem. Aït-Sahalia and Lo (1998) introduce a semi-
parametric alternative where the volatility of the B&S formulation
ismodeled non-parametrically. From a statistical point of view, es-
timating the SPD becomes estimating the second derivative of a
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regression function, but the SPD needs to be a proper density func-
tion (non negative and integrates to one). This dictates that the
price is decreasing and convex in terms of the strike price. How
to impose these constraints presents the main difficulties of direct
applications of nonparametric regression. Aït-Sahalia and Duarte
(2003), Yatchew and Härdle (2006) and Härdle and Hlávka (2009)
stress the importance of enforcing such shape constraints. Fan and
Mancini (2009) use a non-parametric technique to estimate the
state price distribution but not the density because the former is
easier to estimate. Giacomini et al. (2008) use mixtures of scales
and shifted t-distributions, while Yuan (2009) uses a mixture of
lognormals. Curve fitting method have been presented in Rubin-
stein (1994) and Jackwerth and Rubinstein (1996). Liechty and
Teng (2009) introduce the Bayesian quadraturemodel, where both
the locations and weights of the support points for approximating
the SPD are random variables. Most nonparametric methods re-
quire a rich body of data to achieve desired convergence proper-
ties. The main goal of this paper is to infer the SPD from markets,
where trading activities are less frequently occurred.

For this purpose, we employ a Bayesian quadrature method
as a calibration method for the SPD from option prices, because
it allows us to incorporate prior assumptions on the model
parameters and hence avoids problems with data sparsity. This
approach takes a prior distribution which can be parametric
(e.g. lognormal) or a uniform density. The posterior distribution
of the SPD is calibrated to market data. This method is a special
case of a mixture model, where the component densities are point
measures.

The novelty of the Bayesian quadrature approach relies on the
fact that it uses unequal weights and is in a Bayesian framework.
Approximating the state price density with weighted sum of δ-
functions produces good model fitting by using a parsimonious
model. Bayesian inference gives a straightforward probabilistic
framework and provides reasonable credible regions for the
implied state price density, which can be further used for various
purposes such as hedging and pricing.

We show that the proposed method has some advantages over
other nonparametric methods: (1) it considers the locations and
weights of the support points in the finite representation of the SPD
as randomvariables, (2) it is parsimonious and allows for statistical
inference, it enables us to construct credible regions for the current
value of the SPD (3) it is computationally efficient in the sense that
a Markov chain Monte Carlo algorithm with Gibbs sampler can be
adopted, so that no additional tuning procedures are required for
exploring the posterior distribution and (4) it is robust even if the
market faces data sparsity issues. (5) These classes of Risk Neutral
probabilities do not stem from market-risk-price assumptions.

We conduct our empirical analysis based on weather deriva-
tive (WD) data traded at the Chicago Mercantile Exchange (CME).
WDs are newly developed financial instruments. Key features of
weather derivatives are that the underlying process, i.e., temper-
ature or rainfall index is not tradable and cannot be replicated by
other risk factors (Benth et al., 2007; Härdle and López-Cabrera,
2012; López-Cabrera et al., 2013). Consequently, the Black–Scholes
formula is unsuitable since an essential element of it is the tradabil-
ity of the underlying. In addition, the temperature index shows ap-
parent seasonality and it is determined by physical phenomena. An
interesting feature is that weather futures and options are rarely
traded and traded only at a few strike prices compared with other
more frequently traded equity markets. The CME (the official WD
platform) provides closing prices, which are however not the real
trading prices negotiated by the market participants. The SPD en-
ables to price options with complicated payoff functions simply
by numerical integration of the payoff with respect to this den-
sity. However, data sparsity makes the SPD estimation a statisti-
cal challenge. In addition, we study the dynamics of the SPDwhich

provides useful insight into the economic behavior of agents sen-
sitive to weather conditions and the time inhomogeneity of the
market.

This paper is structured as follows. Section 2 describes the
quadrature approach and its comparison to other popular SPD den-
sity estimationmethods. Section 3 conducts the empirical analysis
of SPDs from CME weather option data, studies the dynamics of
the SPDweather type, and gives economic interpretations from the
implied SPD. In Section 4, we address the data sparsity issue by ad-
dressing why other nonparametric methods fail particularly when
options with only a few strike prices are traded. Section 5 con-
cludes the paper. All quotations of currency in this paper will be in
USD and therefore wewill omit the explicit notion of the currency.
All the SPDs computations were carried out in Matlab version 7.6.
The option data on temperature indices were obtained from CME
and are also available from the research data center of the CRC 649
‘‘Economic Risk’’.

2. The Bayesian quadrature method

Options are contingent claims on an underlying asset. Plain
vanilla option is of either put or call type with a fixed maturity,
i.e., the value of the underlying is compared to a strike price K at
maturity T . Let x denote the underlying asset’s price atmaturity (in
our application this will be equivalent to futures prices onweather
indexes). For a call option, one has the payoff max(x − K , 0) and
for a put max(K − x, 0). If we denote a put as i = 1 and a call with
i = 2, and observed strike prices Eij for i = 1, 2 and j = 1, . . . ,Ni
indexing all possible strike prices on any given day t , then the
payoff function at maturity, denoted by ℘ij(x), can be represented
by one formula,

℘ij(x) = (−1)i(x − Eij)I

(−1)i(x − Eij) > 0


(x),

where I {A} is an indicator function for a set A. Let t be the current
time. The fair option price is given as (1) as the discounted value of
the expected payoff function:

Cij = exp (−rτ) EQ
[℘ij(x)],

where τ = T−t is the time tomaturity and EQ
[·] is the expectation

operator taken under the risk-neutral measure. The density f (x)
under this risk-neutral measure is the defined SPD. When the SPD
f (x) exists, this equals:

Cij = exp (−rτ)


℘ij(x)f (x)dx. (2)

The left hand side of (2) is observed on the market for different
payoff types depending on put/call (i = 1, 2), strike price Eij, and
time to maturity τ . The interest of statistical calibration is to infer
the SPD f (x) from a set of observed option prices.

2.1. The quadrature method

The word ‘‘quadrature’’ means a numerical method to approx-
imate an integral either analytically or numerically, see Ueberhu-
ber (1997) for example. In this research, we work the adverse way,
since the interest is to infer the unknown density from the ob-
served integrals (option prices). Define the δ-function δϖ (·) as a
unit point measure at the location s by

δs(x) = I {s = x} .

The basic idea of the quadrature method is to approximate the
SPD f (x) by fN(x|w, θ), a weighted sum of δ-functions:

fN(x|w, θ) = w1δθ1(x) + · · · + wNδθN (x), (3)

with unknown locations θ = (θ1, . . . , θN)⊤ and weights w =

(w1, . . . , wN)⊤. Here, N is a non-negative integer (smoothing)
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