
Insurance: Mathematics and Economics 64 (2015) 294–305

Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Interval estimation for a measure of tail dependence
Aiai Liu a, Yanxi Hou b, Liang Peng c,∗

a School of Mathematics, Tongji University, China
b School of Mathematics, Georgia Institute of Technology, USA
c Department of Risk Management and Insurance, Georgia State University, USA

a r t i c l e i n f o

Article history:
Received April 2015
Received in revised form
May 2015
Accepted 30 May 2015
Available online 29 June 2015

Keywords:
Conditional Kendall’s tau
Interval estimation
Jackknife empirical likelihood
Tail dependence
Extreme events

a b s t r a c t

Systemic risk concerns extreme co-movement of several financial variables, which involves characteriz-
ing tail dependence. The coefficient of tail dependencewas proposed by Ledford and Tawn (1996, 1997) to
distinguish asymptotic independence and asymptotic dependence. Recently a newmeasure based on the
conditional Kendall’s tau was proposed by Asimit et al. (2015) to measure the tail dependence and to dis-
tinguish asymptotic independence and asymptotic dependence. For effectively constructing a confidence
interval for this newmeasure, this paper proposes a smooth jackknife empirical likelihoodmethod, which
does not need to estimate any additional quantities such as asymptotic variance. A simulation study shows
that the proposed method has a good finite sample performance.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A recent research interest in risk management focuses on sys-
temic risk in banking industry and insurance companies. Systemic
risk concerns extreme co-movements of key financial variables. Ef-
fectivelymeasuring tail dependence plays an important role in un-
derstanding andmanaging systemic risk. See Allen et al. (2012) for
measuring systemic risk and using the measure to predict future
economic downturns; Chen et al. (2013) for a connection of sys-
temic risk between banks and insurers; an excellent review on sys-
temic risk is given by Bisias et al. (2012).

Extreme co-movement usually requires measuring tail depen-
dence of several variables. Tail dependence has been studied in the
context of multivariate extreme value theory for decades. Since
such a measure focuses on a far tail region of the underlying dis-
tribution, statistical inference is quite challenging due to the lack
of observations. Therefore, it is always desirable to find a better
measure or some competitive measures and to have an efficient
inference procedure.

Suppose (X, Y ) is a random vector with joint distribution F and
continuous marginal distributions F1 and F2. Define U = 1− F1(X)
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and V = 1 − F2(Y ), then the distribution of (U, V ) is a survival
copula given by

C(u, v) = P(1 − F1(X) ≤ u, 1 − F2(Y ) ≤ v). (1.1)

In order to predict an extreme co-movement of financial market,
it is useful to investigate the behavior of the so-called tail cop-
ula defined as limt→0 t−1C(tu, tv), which can be employed to ex-
trapolate data into a far tail region; see Haug et al. (2011) for an
overview. When the limit is not identically zero (i.e., asymptotic
dependence), one can predict rare events via estimating this lim-
iting function. On the other hand, if the limit is identically zero
(i.e., asymptotic independence), then some additional conditions
are needed for predicting extreme events. To effectively distin-
guishing these two cases, Ledford and Tawn (1996, 1997) intro-
duced the so-called coefficient of tail dependence η ∈ (0, 1] by
assuming that C(t, t) = t1/ηs(t), where s(t) is a slowly varying
function, i.e., limt→0 s(tx)/s(t) = 1 for all x > 0. Therefore, η and
the limit of s(t) can be used to distinguish asymptotic dependence
(i.e., η = 1& limt→0 s(t) > 0) and asymptotic independence (i.e.,
η < 1 or η = 1& limt→0 s(t) = 0). Statistical inference for η is
available in Dutang et al. (2014), Draisma et al. (2004), Goegebeur
and Guillou (2012) and Peng (1999).

Although copula gives a complete description of dependence
among variables, having some summarymeasures for dependence
is useful in practice. Some commonly used ones include correlation
coefficient, Spearman’s rho and Kendall’s tau. Similarly, tail copula
determines the tail dependence completely, but the coefficient of
tail dependence η gives a useful measure of tail dependence. Since
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Kendall’s tau is invariant to marginals and has been popular in
risk management, one may wonder whether Kendall’s tau can be
modified to give a simple and effectivemeasure of tail dependence
as well. Recently, when the survival copula C(u, v) is a bivariate
regular variation, i.e., H(u, v) = limt→0 C(tu, tv)/C(t, t) exists
and is finite for u, v ≥ 0, Asimit et al. (to appear) investigated the
limit of the conditional Kendall’s tau (i.e., θ = limu→0 E{sgn((U1 −

U2)(V1 − V2))|max(U1,U2, V1, V2) ≤ u}), found that θ = 4 1
0

 1
0 H(x, y)dH(x, y) − 1 and showed that θ is positive for a

subclass of asymptotic dependence such as elliptical tail copulas
and nonpositive for a subclass of asymptotic independence such
as normal copulas. Due to its ease of implementation, elliptical
copulas and elliptical tail copulas have been employed in risk
management; seeMcNeil et al. (2005). The study of tails ofmixture
of elliptical copulas is available inManner and Segers (2011). A new
method for constructing copulas with tail dependence is given by
Li et al. (2014). Since the above measure θ involves the function
H rather than some particular values of H as in η, one may expect
that θ could be more effective statistically than η in distinguishing
asymptotic behavior and measuring tail dependence.

For interval estimation of θ , one can estimate the complicated
asymptotic variance of the proposed nonparametric estimator
in Asimit et al. (to appear). In order to avoid estimating the
asymptotic variance, a naive bootstrap method can be employed
to construct a confidence interval, which generally performs badly
in finite sample. Alternatively empirical likelihood methods have
been proved to be quite effective in interval estimation and
hypothesis test, which requires no estimation for any additional
quantities. We refer to Owen (2001) for an overview on empirical
likelihood methods. In this paper we investigate the possibility
of employing an empirical likelihood method to construct a
confidence interval for the limit of the conditional Kendall’s tau.

We organize this paper as follows. Section 2 presents the new
methodology and theoretical results. A simulation study and real
data analysis on Danish fire losses are given in Section 3. All proofs
are put in Section 4.

2. Methodology and theoretical results

Throughout we assume observations (X1, Y1), . . . , (Xn, Yn) are
independent and identically distributed with distribution function
F and continuous marginals F1 and F2. For the study of asymptotic
tail behavior of F , Asimit et al. (to appear) considered the limit
of the conditional Kendall’s tau, i.e., θ = limu→0 E{sgn((U1 −

U2)(V1 − V2))|max(U1,U2, V1, V2) ≤ u}. A simple nonparametric
estimator for θ is to replace the conditional expectation by its
sample conditional mean, which leads to

θ̂ (k)=


1≤i<j≤n

sgn((Ûi − Ûj)(V̂i − V̂j))I(max(Ûi, Ûj, V̂i, V̂j) ≤ k/n)
1≤i<j≤n

I(max(Ûi, Ûj, V̂i, V̂j) ≤ k/n)
,

where Ûi = 1−F̂1(Xi), V̂i = 1−F̂2(Yi), F̂1(x) = n−1n
i=1 I(Xi ≤ x),

F̂2(y) = n−1n
i=1 I(Yi ≤ y), k = k(n) → ∞ and k/n → 0 as

n → ∞. Under some conditions, Asimit et al. (to appear) derived
the asymptotic limit of θ̂ (k), which has a complicated asymptotic
variance. Here we investigate the possibility of employing an em-
pirical likelihood method to construct a confidence interval with-
out estimating the asymptotic variance explicitly. By noting that
θ̂ (k) is a solution to the following equation
1≤i<j≤n

{sgn((Ûi − Ûj)(V̂i − V̂j)) − θ}

× I(max(Ûi, Ûj, V̂i, V̂j) ≤ k/n) = 0,

one may employ the empirical likelihood method based on esti-
mating equations in Qin and Lawless (1994) to the above equa-
tion. Unfortunately such a direct application fails to achieve a chi-
squared limit due to the involved U-statistic and the plug-in es-
timators for U ′

i s and V ′

i s. Recently a so-called jackknife empirical
likelihood method is proposed by Jing et al. (2009) to construct
confidence intervals for non-linear functions includingU-statistics.
However, due to the involved indicator function, a direct appli-
cation of the jackknife empirical likelihood function fails again to
have the Wilks theorem. In order to catch the contribution made
by the plug-in empirical distributions, we propose to employ the
smooth jackknife empirical likelihood method proposed by Peng
andQi (2010) for constructing confidence intervals for a tail copula.

More specifically, for l1, l2 = 1, . . . , n, define

F̂ (l1)
1 (x) =

1
n − 1

n
j=1,j≠l1

I(Xj ≤ x), Û (l1)
l2

= 1 − F̂ (l1)
1 (Xl2),

F̂ (l1)
2 (x) =

1
n − 1

n
j=1,j≠l1

I(Yj ≤ x), V̂ (l1)
l2

= 1 − F̂ (l1)
2 (Yl2),

T̂n(θ) =
2

n(n − 1)


1≤i<j≤n


sgn


(Ûi − Ûj)(V̂i − V̂j)


− θ


×G


1 −

n
k Ûi

h


G


1 −

n
k V̂i

h


G


1 −

n
k Ûj

h


G


1 −

n
k V̂j

h


,

T̂ (l1)
n (θ) =

2
(n − 1)(n − 2)

×


1≤i<j≤n, i,j≠l1


sgn


(Û (l1)

i − Û (l1)
j )(V̂ (l1)

i − V̂ (l1)
j )


− θ


×G


1 −

n
k Û

(l1)
i

h
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1 −
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k V̂
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1 −
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k Û
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1 −

n
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(l1)
j

h


,

where G(x) =
 x
−∞

g(y) dy and g is a symmetric smooth density
function with support [−1, 1] and h = h(n) > 0 is a bandwidth.
Therefore a jackknife sample is defined as

Ẑi(θ) = nT̂n(θ) − (n − 1)T̂ (i)
n (θ) for i = 1, . . . , n.

Note that, in order to take care of the contributions from Û ′

i s and

V̂ ′

i s in proving Wilks theorem, we do not use G(
1− n

k max{Ûi,V̂i,Ûj,V̂j}
h )

instead of the product of G′s in the above definition of T̂n(θ). Based
on this jackknife sample, a smooth jackknife empirical likelihood
function for θ is obtained as

L(θ) = max


n

i=1

(npi) : p1 ≥ 0, . . . , pn ≥ 0
n

i=1

pi = 1,

n
i=1

piẐi(θ) = 0


. (2.1)

It follows from the Lagrange multiplier technique that

l(θ) := −2 log L(θ) = 2
n

i=1

log

1 + λẐi(θ)


, (2.2)

where λ = λ(θ) satisfies
n

i=1

Ẑi(θ)

1 + λẐi(θ)
= 0.

In order to show that Wilks theorem holds for the above smooth
jackknife empirical likelihood method, we need some regularity
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