
Insurance: Mathematics and Economics 64 (2015) 326–336

Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Maxentropic approach to decompound aggregate risk losses
Erika Gomes-Gonçalves a, Henryk Gzyl b,∗, Silvia Mayoral a
a Department of Business Administration, Universidad Carlos III de Madrid, Spain
b Centro de Finanzas, IESA, Caracas, Bolivarian Republic of Venezuela

a r t i c l e i n f o

Article history:
Received March 2015
Received in revised form
July 2015
Accepted 10 July 2015
Available online 17 July 2015

Keywords:
Frequency disentangling
Decompounding
Density of individual losses
Maximum entropy

a b s t r a c t

A riskmanagermay be facedwith the following problem: she/he has obtained loss data collected during a
year, but the data only contains the total number of events and the total loss for that year. She/he suspects
that there are different sources of risk, each occurringwith a different frequency, andwants to identify the
frequency with which each type of event occurs and if possible, the individual losses at each risk event.

The purpose of this methodological note is to examine a combination of disentangling and decom-
pounding procedures, to get as close as possible to that goal. The disentangling procedure is actually a
two step process: First, a preliminary analysis is carried out to determine the number of risks groups
present. Once that is decided, the underlying model for the frequency of each type of risk is worked out.
After that we use the maxentropic techniques in the decompounding stage to determine the distribution
of individual losses that aggregated yield the observed total loss.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An interesting directive proposed in the Basel II agreement is
the possibility for the banks to develop their own advanced mea-
surement approach (AMA) to compute the regulatory capital based
on the loss distribution approach (LDA). This approach,modeled on
that developed by the insurance industry and later includedwithin
the Basel II in the advanced measurement approach (AMA) for op-
erational risk, is used to determine the distribution of the total loss
from two complementary ingredients, to wit, the frequency and
the severity of the individual losses measured (or observed).

Let Nh denote the number losses of certain type labeled by
h = 1, . . . ,H , occurring in a given time interval, H being the total
number of risk sources, and Xh,k, k ≥ 1 a sequence of positive real-
valued random variables that represent the size of the kth loss of
type h. With this notation, the quantity of interest is the compound
model given by

S =

H
h=1

Sh where Sh =

Nh
k=1

Xh,k with Sk = 0 if Nh = 0. (1)

Here, h = 1, . . . .,H labels the business line/type of the institution.
In (1), it is supposed for each h that the Xh,k, k ≥ 1 are
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independent and identically distributed and independent of theNh,
and we shall denote by Xh a random variable having that common
distribution.

An interesting problem confronting the risk manager occurs
at the level of the Sh. It may be the case that the frequency of
events of type h is actually the sum of at least two different
types of events, i.e., it may happen that Nh = N1

h + N2
h during

the observation period, even though the individual losses in each
case may be the same. In this case, the risk analyst may want
to know how many types of risk events of each type occur, and
if possible, what is the distribution of individual losses. This is
of interest because it is at that level where loss prevention or
mitigation may be applied. This question motivates the problem
that we shall examine here by a combination of procedures: one
(called disentangling) which consists of determining how many
risk sources are there and their frequencies, and the other, the
decompounding, is used to determinewhat is the statistical nature
of the individual severities. Both procedures will be explained in
Section 2, in which we establish the methodological aspects of the
paper. We shall see that unless we know that the distributions
of individual losses are the same, all that one is able to obtain
is a mixture of distributions, a kind of collective individual loss
distribution, which becomes the true individual distribution only
when it is known that all are the same.

Thedisentanglingprocedurewasproposed inGomes-Gonçalves
and Gzyl (2014), and we briefly review it here for the sake of com-
pleteness. The decompounding problem was treated for the first
time by Buchmann and Grübel (2004). There they estimate the
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Fig. 1. Procedure.

frequency rate parameter and the individual severity distribution,
in a univariate compound Poisson distribution non-parametrically
through a discrete Panjer inversion. Later on, a different approach
to the problem was presented in Van Es et al. (2007), who pro-
posed a kernel type, nonparametric density estimator to obtain the
individual losses of a univariate and bivariate compound Poisson
distribution. They report good results in the numerical examples
presented. Bøgsted and Pitts (2010) extended the work of Buch-
mann and Grübel (2004), and constructed a generalization of a
nonparametric estimator for any compoundbase process given any
parametric model for the distribution of the frequencies. We shall
carry out the decompounding procedure using the maximum en-
tropy method, for which the input shall be the Laplace transform
of the aggregated loss S.

The remainder of the paper is organized as follows: the second
section is devoted to a more detailed description of the methodol-
ogy, the third to a reviewof themaximumentropymethod, and the
fourth to the discussion of a few numerical examples, after which
we gather some concluding remarks.

2. Methodological preliminaries

In this section we lay down the basic framework in which we
shall beworking.We refer the reader to Fig. 1 for graphic display of
the setup. Asmentioned, the number of risk events during a certain
period of time is recorded aswell as the total loss during the period.
It is known, or suspected, that there may be more of one source
of risk present in the recorded aggregated loss, thus the first issue
to take care of, is to determine the number of different risk types
and their statistical nature. Once this is achieved, the next order
of business is to determine the distribution of the individual risks.
In actual practice, before applying the disentangling procedure
to determine the statistical nature of the various frequencies of
events, a first step consisting of determining how many different
type H of events are there will be applied. Once that number
is known (H = 2 in the diagram), we apply the disentangling
procedure described below. The output of this preprocessing stage
is the specification of H = 2 integer valued random variables. If

we suppose that the individual losses of each type are the same,
invoking (1), it is clear for the independence assumptions that the
Laplace transform ψ(α) of the total loss is given by

ψ(α) = E[e−αS
] = E[e−αS1 ]E[e−αS2 ]

= GN1(φ(α))GN2(φ(α)) (2)

where, of course, φ(α) = E[e−αX
] denotes the Laplace transform

of a random variable having the common distribution of the indi-
vidual losses in (1). Thus, once that we have determined the dis-
tributions of the Ni, i = 1, 2, and computed ψ(α) from the data,
we can solve (2) for φ(α) and use it as input in the maxentropic
methods to obtain the probability density of the individual losses
from it. This is the second stage of the process.

The result of the methodology summed up in 1 is a mixture of
discrete distributions to describe the total frequency N of events,
that will be used as input of our second step, the decompounding
methodology to determine the distribution of individual loses
present in the aggregate loss.

To exemplify, suppose that the frequencies are Poisson(λi), for
i = 1, . . . ,H , and that the individual severities are distributed
according to fXi . In this case, a simple computation shows that in
this case (2) becomes

ψ(α) = e
−

H
h=1

λi(E[e−αXh ]−1)
= e−λ(E[e−αX̂ ]−1) (3)

where we put λ =
H

h=1 λi and X̂ is a random variable whose den-
sity is the mixture fX̂ =

H
h=1

λI
λ
fXh . That is, the aggregated risk is

the result of compounding a risk produced with a Poisson inten-
sity equal to the sum of the individual intensities and individual
loss with probability density equal to a weighted average of the in-
dividual densities, with respect to weights equal to the proportion
of the individual frequency relative to the total frequency.

Following Wang (1997) we may extend the previous result as
follows.

Proposition 1. Suppose that the H compound risks to be aggregated
have frequencies Ni with a common mixing distributions F(θ) such
that, given θ the N|θ ∼ P(θλi) and are independent. Let S =

H
h=1 Si

be as above. Then S ∼
N

n=1 X̂n with N|θ ∼ P(θλ), where λ =H
h=1 λi, and as above, the X̂n have common density

H
h=1

λI
λ
fXh .

Proof. The proof is actually easy, and hinges on the fact that λi
λ

=

θλi
θλ

is independent of the mixing parameter θ , thus proceeding as
if to prove (3) we would be led to

ψ(α) =


e−θλ(E[e−αX̂ ]−1)dF(θ) = E

e
−α

N
n=1

X̂n


as claimed �

Notice that for the proposed mixing we have λi/


j λj =

E[Ni]/


jE[Nj]. This type of mixing appears as well in whatWang
(1997) calls common shock models, which include correlated
Poisson frequencies. The class of frequencies for which this is valid
includes the Poisson and Negative Binomial random variables.
These results were turned into a proposal to define an equivalent
individual loss distribution by Wang, which we state as follows.

Definition 1 (Equivalent Mixture). Let fXh denote the common
probability density of the individual losses for the compound losses
of the hth type, h = 1, . . . ,H , and let Nh denote the respective loss
frequency. The aggregated individual loss has a density given by

fX̂ =

H
h=1

E[Nh]

E[Nagg ]
fXh , (4)
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