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a b s t r a c t

In this article, we study two broad classes of convex order related optimal insurance decision problems,
in which the objective function or the premium valuation is a general functional of the expectation,
Value-at-Risk and Average Value-at-Risk of the loss variables. These two classes of problems include
many existing and contemporary optimal insurance problems as interesting examples being prevalent in
the literature. To solve these problems, we apply the Karlin–Novikoff–Stoyan–Taylor multiple-crossing
conditions, which is a useful sufficient criterion in the theory of convex ordering, to replace an arbitrary
insurance indemnity by a more favorable one in convex order sense. The convex ordering established
provides a unifying approach to solve the special cases of the problem classes. We show that the optimal
indemnities for these problems in general take the double layer form.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Optimal insurance decision problem has long been one of the
most popular research topics in the insurance context due to its
immediate practical consequence. The optimality of the deductible
contracts for policyholders subject to the classical expected value
premium principle was first proven by Borch (1960) for the mini-
mization of the variance of the retained loss, and by Arrow (1974)
for the maximization of the expected utility (EU) of the terminal
wealth. Since then, intense effort has been observed in the lit-
erature to solve similar problems under various model settings
with different objective functions as well as imposing various con-
straints that lead to a variety of optimality results. For example,
see Asimit et al. (2013a,b), Balbás et al. (2009), Bernard and Tian
(2009), Cai et al. (2008), Centeno and Guerra (2010), Cheung et al.
(2013, 2014, 2015), Kaluszka and Okolewski (2008), Sung et al.
(2011), and Tan et al. (2011), and the references therein.

The notion of stochastic ordering, in particular convex ordering,
have been well developed and they are essential for comparing
risky alternatives in decision analysis based on different criteria.
For example, convex ordering arranges risks by their variations
with respect to the value of same means, and consequently allows
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the decision maker to choose the ‘‘least risky’’ alternative. Convex
ordering has been thoroughly applied for solving various problems
in economics, finance and actuarial science, which demonstrates
its usefulness and importance. For instance, it can be applied to
compare the aggregate risk of a portfolio, in which the comono-
tonicity structure among the risks attains the upper bound of the
convex order. For comprehensive studies and other applications
in convex ordering, see Denuit et al. (2005), Denuit and Dhaene
(2012), Dhaene et al. (2002, 2006, 2012), Kaas et al. (1994, 2008),
Müller and Stoyan (2002), Rüschendorf (2013), and Shaked and
Shanthikumar (2007), and the references therein.

The convex ordering approach to solve the optimal insurance
decision problem was first adopted by Ohlin (1969) of minimizing
a measure of the dispersion of the retained and ceded losses. The
crucial mathematical tool employed by Ohlin (1969) is the ‘Kar-
lin–Novikoff once-crossing criterion’ by Karlin andNovikoff (1963)
for (increasing) convex ordering. Later, Gollier and Schlesinger
(1996) used the same approach to extend the result of Arrow
(1974) through maximizing an increasing convex order preserv-
ing objective functional of the terminal wealth. More recently, this
approach was re-exploited to solve various optimal insurance de-
cision problems. For instance, Cai andWei (2012) solved themulti-
variate risk minimizing problems in which the risks are positively
dependent. Chi and Tan (2013) considered the optimal insurance
problems under which the premium principle is a certain convex
order preserving functional.

In this paper, we study two broad classes of convex order re-
lated optimal insurance decision problems:
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(I) maximizing a concave order preserving functional of the ter-
minal wealth of the insured with the premium principle spec-
ified by a general function of the expectation, Value-at-Risk
(V@R), and Average Value-at-Risk (AV@R) of the indemnity;
and,

(II) minimizing another general function of expectation, V@R and
AV@Rof the terminal loss of the insuredwith the premiumval-
uated by a general function of the expectation and a convex
order preserving functional of the ceded loss.

Both classes include many existing and contemporary optimal in-
surance problems as interesting examples aswe shall show in later
sections.

Since the problem settings involve the convex order preserving
functionals, it is natural to apply the convex ordering approach
on solving for these two problem classes. Instead of using the
‘Karlin–Novikoff once-crossing criterion’ by Karlin and Novikoff
(1963), we adopt the ‘Karlin–Novikoff–Stoyan–Taylor crossing
conditions’, developed by Stoyan (1983) and Taylor (1983) and
named by Hürlimann (1998, 2008a,b), which is a generalization of
the once-crossing condition. By exploiting this multiple-crossing
criterion, we are able to

(i) rank the insurance indemnities in terms of their convex orders
together with a greater flexibility than that through the once-
crossing condition; and,

(ii) provide a unifying approach to solve for two classes of optimal
insurance decision problems (I) and (II) by using the convex
ordering obtained in (i).

The organization of our paper is as follows. In Section 2, two
classes of optimal insurance problems with the corresponding op-
timality criterion and constraint are formulated. Themain theorem
using the multiple-crossing conditions to establish the convex or-
dering of the insurance indemnities are presented in Section 3. Res-
olutions of the special cases of two classes of problems formulated
in Section 2 are illustrated as the corollaries in Sections 4 and 5.

2. Preliminaries and problem formulation

2.1. Preliminaries

We first recall the definitions and results of several stochastic
orderings. For a comprehensive review of the theory and applica-
tions, see the references in the first paragraph in Introduction. In
this section, Y and Z are random variables with cumulative distri-
bution functions FY and FZ .

Definition 2.1. Y is said to be smaller than Z in the convex
(concave, increasing convex, increasing concave, resp.) order if for
all convex (concave, increasing convex, increasing concave, resp.)
functions ϕ : R → R, E[ϕ(Y )] ≤ E[ϕ(Z)], provided that
the expectations exist. The convex (concave, increasing convex,
increasing concave, resp.) ordering is denoted as Y ≤cx Z (Y ≤cv Z ,
Y ≤icx Z , Y ≤icv Z , resp.).

Since Y ≤cx Z is equivalent to Z ≤cv Y , and Y ≤icx Z is equivalent
to −Y ≥icv −Z , and we shall only make use of the results in
convex and increasing convex order in this article, we only present
the following summary of useful results for the convex and
increasing convex order. The counterpart results for the concave
and increasing concave order are similar. Inwhat follows, all stated
moments are assumed to be finite.

Proposition 2.1.

(i) If Y ≤cx Z, then E[Y ] = E[Z] and Var(Y ) ≤ Var(Z). Also, if
Y ≤icx Z, then E[Y ] ≤ E[Z].

(ii) Define πY (t)
△
= E[(Y − t)+] as the stop-loss transform of Y .

Then, Y ≤icx Z if, and only if, πY (t) ≤ πZ (t) for any real numbers
t. Furthermore, if E[Y ] = E[Z], then Y ≤cx Z if, and only if,
πY (t) ≤ πZ (t).

Notice that the results of convex order and increasing convex order
are analogous to each other; indeed, we have the following equiv-
alence of these two orders provided that the means of Y and Z are
equal.

Proposition 2.2. Y ≤cx Z if, and only if, Y ≤icx Z and E[Y ] = E[Z].

To facilitate further use of convex and increasing convex order-
ings, Karlin and Novikoff (1963) provided sufficient conditions in
terms of the cumulative distribution functions, known as ‘Kar-
lin–Novikoff once-crossing criterion’.

Definition 2.2. The distribution functions FY and FZ are said to be
crossing r ≥ 1 times if there exist

ξ0,2 < ξ1,1 ≤ ξ1,2 < ξ2,1 ≤ ξ2,2 < · · · < ξr,1 ≤ ξr,2 < ξr+1,1,

where ξ0,2
△
= inf{x : FY (x) ≠ FZ (x)} and ξr+1,1

△
= sup{x : FY (x) ≠

FZ (x)}, such that, for each i = 1, 2, . . . , r ,

(i) for any x ∈ (ξi−1,2, ξi,1) and y ∈ (ξi,2, ξi+1,1),

(FY (x) − FZ (x)) (FY (y) − FZ (y)) < 0; and

(ii) if ξi,1 < ξi,2, FY (z) = FZ (z) for any ξi,1 ≤ z < ξi,2.

Theorem 2.3. Assume that E[Y ] = E[Z] (resp. E[Y ] ≤ E[Z]). If FY
and FZ cross once, and FY (x) − FZ (x) < 0 for ξ0,2 < x < ξ1,1, then
Y ≤cx Z (resp. Y ≤icx Z).

In addition, in this paper we shall make use of the following gen-
eralization by Stoyan (1983) and Taylor (1983), coined as ‘Kar-
lin–Novikoff–Stoyan–Taylor crossing conditions’ by Hürlimann
(1998, 2008a,b).

Theorem 2.4. Assume that FY and FZ cross n ≥ 1 times. Then
Y ≤icx Z if, and only if, one of the following two cases is satisfied:
Case1

(i) There is an even number of crossings n = 2m for some m =

1, 2, . . .;
(ii) FY (x) − FZ (x) > 0 for ξ0,2 < x < ξ1,1; and
(iii) for any j = 1, 2, . . . ,m, πY (ξ2j−1,2) ≤ πZ (ξ2j−1,2).

Case 2

(i) E[Y ] ≤ E[Z];
(ii) there is an odd number of crossings n = 2m − 1 where m =

1, 2, . . .;
(iii) FY (x) − FZ (x) < 0 for ξ0,2 < x < ξ1,1; and
(iv) if m ≥ 2, for any j = 1, 2, . . . ,m − 1, πY (ξ2j,2) ≤ πZ (ξ2j,2).

Applying Proposition 2.2 yields an analogous theorem for the
convex order by noting that when E[Y ] = E[Z], Case 1 in
Theorem 2.4 cannot be valid as before.

Theorem 2.5. Assume that FY and FZ cross n ≥ 1 times. Then Y ≤cx Z
if, and only if,

(i) E[Y ] = E[Z];
(ii) there is an odd number of crossings n = 2m − 1 where m =

1, 2, . . .;
(iii) FY (x) − FZ (x) < 0 for ξ0,2 < x < ξ1,1; and
(iv) if m ≥ 2, for any j = 1, 2, . . . ,m − 1, πY (ξ2j,2) ≤ πZ (ξ2j,2).
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