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a b s t r a c t

We study the effects of jump diffusion transition intensities on a life insurance and disability annuity. To
do so, we use a multi-states Markov chain with multiple decrement. Assuming independent statewise
intensities, we evaluate the prospective reserve for this scheme where the insured life is in Active or
Disabled state at inception, respectively. We also examine the components of the prospective reserves
by changing the relevant parameters of the transition intensities, which are the jump size, the average
frequency of jumps as well as the diffusion parameters, assuming deterministic rate of interest. The
computation of the reserve sensitivity with their figures are provided.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recent trends in mortality and morbidity imply that it is not
only important to be able tomitigatemortality and longevity risks,
but also the risks related to the time spent in the disability state.
In short, living longer is pretty much meaningless if the remaining
life is spent with limited ability to perform activities of daily living
(ADL). Severe disability has increased in Japan, a country where
living beyond 110 years is not impassable, as well as in Australia
during the period of 1990s. Over the period of 1980s and 1990s,
physical functional limitations at old age showed an increasing
trend in countries such as New Zealand, Australia, Canada, Taiwan
as well as Great Britain; decreasing trend in the United States
and appear to stagnate in the Netherlands (see Robine and Michel
(2004) and references therein).

An Australian life expectancy survey ranging from 1998 to 2009
revealed that while older Australians are living longer without se-
vere limitation in basic daily activities, the ageing of the popula-
tion and the increasing longevity are leading a greater number of
older people with disability and severe activity limitation (Wen,
2012). In handling the issues of disability transition, it is important
to consider not only the decrease inmortality but also the potential
increase or decrease in disability.
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Previously, many studies focused on the uncertainty and
randomness of mortality intensity, and thereby suggesting the use
of stochasticmortalitymodel (refer toMarocco and Pitacco (1998),
Milevsky and Promislow (2001), Dahl (2004), Biffis (2005) and
Cairns et al. (2006), for instance). Modelling mortality intensity as
a stochastic process is useful in obtaining more realistic premiums
and reserves, as well as in mitigating the systematic risk of an
insurance portfolio related to prolonged longevity via hedging
method (Dahl and Møller, 2006). One possible attempt to resolve
the issue of uncertainty in mortality projection is by issuing
mortality and longevity securities. Under this approach, insurance
companies and pension funds attempt to hedge their longevity
and catastrophic mortality risks by subscribing to longevity and
mortality securities circa 2000–2005. However these securities
lack market liquidity on top of requiring massive upfront capital,
potentially leaving no capital to hedge other risks (see Cairns et al.
(2005)). Many literature have also attempted to formulate the
pricing of these securities (Milevsky and Promislow (2001), Blake
et al. (2006), Wills and Sherris (2010) and Chen et al. (2013) for
instance).

Dahl (2004) exploited the tractability of affine processes and
model the mortality intensity by a general diffusion model. The
process was then used to derive the value of sum insured at time
t , which depends on the development of underlying mortality
intensity. The continuous affine process was then extended in
Biffis (2005) by including the jump component, whereby the
illustrations utilized a jump diffusion model that was allowed to
take negative values, as well as a bivariate square root diffusion
model. Recently, the continuous affine processes in Dahl (2004)
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was then applied to evaluate life insurance liabilities represented
by multistate Markov chain in Buchardt (2014).

The jump diffusion process that has been used to represent
variables such as the default intensity, asset returns as well as
interest rate (such as the work by Duffie and Garleanu (2001),
Filipović (2001), Das (2002), Brigo and El-Bachir (2006),Mortensen
(2006), Kou (2008), Brigo and El-Bachir (2010), Mendoza-Arriaga
and Linetsky (2014) and Mohd Ramli and Jang (2015)) allows us
to capture the effects of shocks, while general diffusion models
are not able to capture jumps in these variables. Hence modelling
mortality and morbidity rate as a jump diffusion process is
required and viable due to the possibility that chronic illnesses
coming as a shock event, thereby causing functional limitations
as well as disability (such as stroke caused paralysis, heart attack,
pandemic disease, and disability caused by radiation exposure). It
is also of practical interest for public and private sector in health
insurance to consider modelling both the mortality rate and the
morbidity rate to evaluate the reserve of a term insurance and
disability annuity scheme.

Norberg (1995) presented multi-state life/disability insurance
models with a comparative study of stochastic interest and
stochastic mortality. The applications and modelling of multistate
models in health insurance to obtain safety margins on premiums
and reserves can be found in Christiansen (2012, 2013). Recently
Buchardt (2014) showed how to valuate life insurance liabilities
using affine processes for modelling dependent interest and
transition rates with a multi-state Markov chain.

In this study we attempt to extend the jump diffusion
framework in Biffis (2005) to represent the mortality and
morbidity rates of a 3-state and 2-state hierarchicalMarkov chains.
Unlike Fong et al. (2013) whom considered a Markov chain with
transient states and an absorbing state, we adopt the hierarchical
Markov chain and disregard the possibility of recovery as in
Buchardt (2014) and Olivieri and Ferri (2003) as we assume
that at the age of 65, the elderlies are the group most at risk
of losing physical functioning that would result in permanent
physical impairment. Even after a recovery, disabilities would
most likely cause the elderlies not to be entirely fit to re-join the
employment pool and gain income as when they were younger,
thereby making annuity an important element in a long term care
(LTC) insurance scheme. Hence, by the chronic characteristics of
the long term care illness, the assumption of permanent disability
is justifiable. Disregarding the uncertainty of financial risk element
by letting the interest rate to be deterministic, we then apply the
jump diffusion process in hierarchical Markov chain to model the
random expansion and compression of morbidity, and use it to
evaluate the prospective reserve of a term insurance and disability
annuity scheme.

This article is structured as follows: we describe the jump
diffusion process used to represent the statewise transition
intensities in Section 2, together with the derivation of the
multivariate joint Laplace transform. This explicit expression for
the joint Laplace transform of the time integral of the jump
diffusion process provides a closed-form solution for the joint
survival/non-disabled probability that essentially coincides with
the expression for the bond price in interest rate model (Jang,
2007). This also leads to model default risk and price for a wide
range of credit-sensitive instruments such as CDS rate (MohdRamli
and Jang, 2015). To the best of our knowledge, modelling both
the mortality rate and the morbidity rate via the joint Laplace
transform of a multivariate jump diffusion process is the first
contribution in the context of evaluating the prospective reserve
for the insured life.

It is then followed by Section 3 consisting of the life insurance
and disability annuity model setup, entailing the probabilistic
setup to describe the model framework. Section 4 shows how we

Fig. 1. Three simulated paths of jump diffusion process.

apply the jump diffusion model to a term insurance and disability
annuity, using an example whereby the statewise intensities are
independent. Assuming deterministic rate of interest, we evaluate
the prospective reserve for this scheme where the insured life
is in Active or Disabled state at inception, respectively. We then
examine the sensitivity of prospective reserve components by
changing the relevant parameters of the transition intensities,
which are the jump size, the average frequency of jumps as well as
the diffusion parameters, with their figure illustrations. Section 5
concludes the study.

2. Jump diffusion processes

In this section we derive the joint Laplace transform of a
multivariate jump diffusion process, conditional on the history
of its evolution up to time t described by a filtration Gt =

σ


λ(1) (s) , . . . , λ(n) (s)


: s ≤ t


∈ Rn. The transition rates from
state i, λ(i) (t) is assumed to follow a jump diffusion process as
defined below:

dλ(i) (t) = c(i) b(i)
+ a(i)λ(i) (t)


dt

+ σ (i)


λ(i) (t)dW (i) (t) + dL(i) (t) ,

L(i) (t) =

M(t)
h=1

Y (i)
h , (1)

where c(i)b(i) represents the long term mean level of the factor
being modelled (state-wise transition intensity), c(i)a(i) represents
the drift coefficient, which is the speed atwhich the factor is driven
back to its long term mean with c(i)a(i) < 0, σ (i) is the diffusion
coefficient and W (i) (t) is a standard Brownian motion governing
the process. Fig. 1 exhibits MATLAB illustration of the simulated
paths of three jump diffusion process.

We define as a pure jump process withM (t) being the number
of jumps, representing total number of events up to time t
and Yh, h = 1, 2, . . . ,M (t) are their sizes. The point process
M (t) is independent of the vector sequence of jump sizes. Yh’s
occurrence is assumed to be simultaneous for all i and that they
are independent and identically distributed (i.i.d) with distribution
function F(y).

In this model, the dependence between the intensities λ(i) (t)
comes from the common event arrival process M (t). We assume
that event arrival process M (t) follows a homogeneous Poisson
process with frequency parameter ρ. We impose dependency
between the jump sizes of each intensity using a multivariate
distribution.

We also define the integrated transition intensities Λ(i) (t) = t
0 λ(i) (s) ds for the purpose of derivation of the joint survival/non-

disabled probabilities in the next section.
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