
Insurance: Mathematics and Economics 67 (2016) 120–124

Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

A note on some joint distribution functions involving the time of ruin
David C.M. Dickson
Centre for Actuarial Studies, Department of Economics, University of Melbourne, VIC 3010, Australia

a r t i c l e i n f o

Article history:
Received September 2015
Received in revised form
December 2015
Accepted 16 December 2015
Available online 24 December 2015

Keywords:
Time of ruin
Deficit at ruin
Surplus prior to ruin
Joint distribution function
MAP risk model

a b s t r a c t

In a recent paper, Willmot (2015) derived an expression for the joint distribution function of the time of
ruin and the deficit at ruin in the classical risk model. We show how his approach can be applied to obtain
a simpler expression, and by interpreting this expression by probabilistic reasoning we obtain solutions
for more general risk models. We also discuss how some of Willmot’s results relate to existing literature
on the probability and severity of ruin.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This note is concerned with finite time ruin problems and its
starting point is a recent paper by Willmot (2015) who considers
the classical riskmodel. Our results extendbeyond the classical risk
model, but we start here with a description of this model. As we
make many references to Willmot (2015), we follow his notation.
Thus, the insurer’s surplus process is {Ut; t ≥ 0} where for t ≥ 0,
Ut = u + ct − St . Here u ≥ 0 is the insurer’s initial surplus,
c is the rate of premium income per unit time (assumed to be
received continuously), and St =

Nt
i=1 Yi denotes the aggregate

claim amount up to time t , where {Nt; t ≥ 0} is a Poisson process
with parameter λ and {Yi}

∞

i=1 is a sequence of independent and
identically distributed random variables, with Yi representing the
amount of the ith claim. Let P(y) = Pr(Y1 ≤ y) = 1 − P̄(y), y ≥ 0,
and let p(y) =

d
dyP(y). We assume that c = (1 + θ)λE(Y1) where

θ > 0 is the premium loading factor.
The time of ruin is denoted T and is defined as T = inf{t :

Ut < 0} with T = ∞ if Ut ≥ 0 for all t ≥ 0. Further let |UT |

denote the deficit at the time of ruin and letUT− denote the surplus
immediately prior to ruin. We define the ultimate ruin probability
as ψ(u) = Pr(T < ∞ | U0 = u) = 1 − φ(u), the finite time ruin
probability as ψ(u, t) = Pr(T ≤ t |U0 = u) = 1 − φ(u, t), and
what we call the t-deferred ruin probability as

ψ̄(u, t) = Pr(t < T < ∞|U0 = u) = ψ(u)− ψ(u, t).
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Similarly, we define probability and severity of ruin functions in
finite and infinite time as G(u, y) = Pr(T < ∞, |UT | ≤ y|U0 = u)
and G(u, y, t) = Pr(T ≤ t, |UT | ≤ y|U0 = u), with the t-deferred
probability and severity of ruin function being

Ḡ(u, y, t) = Pr(t < T < ∞, |UT | ≤ y|U0 = u)
= G(u, y)− G(u, y, t).

Let F(y, t) = Pr(St ≤ y), with density function f (y, t) for y > 0.
Further, F(0, t) = Pr(Nt = 0) = e−λt .

Willmot (2015) considers the equation

∂

∂t
h(u, t) = c

∂

∂u
h(u, t)− λ h(u, t)

+ λ

 u

0
h(u − x, t) p(x) dx + τ(u, t), (1.1)

and the special case when τ(u, t) = τ(u). He solves these
equations using Laplace transform techniques, applying different
approaches for the special case and the general case, and finds
solutions for φ(u, t) and G(u, y, t) using the special case solution.
The solution for φ(u, t) is thewell-known Prabhu’s (1961) formula
(as expected!), and the formula for G(u, y, t) is new. However, this
new formula is somewhat complicated, and it is not easy to give a
probabilistic interpretation of it.

Equations similar to the special case of (1.1) (i.e. τ(u, t) = τ(u))
have a long history in the risk theory literature; see Arfwedson
(1950), Prabhu (1961) and references therein. In this literature
τ(u) has a specific form that relates to h(u, t) having a particular
ruin-theoretic interpretation. Problems previously studied include
h(u, t) = ψ̄(u, t), and this points to an alternative approach to
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finding a formula for G(u, y, t), and to extensions, e.g. involving
UT− . The solution we obtain for G(u, y, t) in the next section has
a clear probabilistic interpretation which indicates how we can
obtain solutions for more general risk models.

The main contributions in this note are a simple formula for
Ḡ(u, y, t) and an extension in the next section, and in Section 3 a
generalisation of this formula for Ḡ(u, y, t) to the MAP risk model.
In Section 4 we consider an alternative formula for G(u, y, t).

2. Joint distribution functions in the classical risk model

Willmot (2015) applies the result in his Theorem 2 to obtain
expressions for φ(u, t) and G(u, y, t). We now apply the same
result to obtainψ(u, t). This will illustrate our earlier point about a
complicated formula (sinceψ(u, t) = limy→∞ G(u, y, t)), and will
also serve to show that studying the t-deferred ruin probability
provides a more straightforward approach to the problem of
finding ψ(u, t) and related probabilities from Eq. (1.1). Willmot’s
formula (17) yields the unsurprising result

ψ(0, t) =

 t

0
w(0, s) ds,

where w(0, t) =
d
dtψ(0, t) is the (defective) density of T when

u = 0 (see Dickson and Willmot, 2005 or Dickson, 2007), and for
u > 0 we obtain

ψ(u, t) = e−λt α(u + ct)− α(u)

+

 u+ct

0
α(u + ct − x) f (x, t) dx

− c
 t

0
ψ(0, s) f (u + c(t − s), t − s) ds (2.1)

where

α(u) =
1

λθE(Y1)

 u

0
φ(u − x) λ P̄(x) dx.

It is well known (e.g. Gerber, 1979) that

φ(u) = φ(0)+
λ

c

 u

0
φ(u − x) P̄(x) dx,

giving

α(u) =
c

λθE(Y1)
(φ(u)− φ(0)) =

φ(u)
φ(0)

− 1

since φ(0) = θ/(1 + θ). Thus, by Eq. (2.1) we obtain

ψ(u, t) = e−λt

φ(u + ct)
φ(0)

− 1


−


φ(u)
φ(0)

− 1


+

 u+ct

0


φ(u + ct − x)

φ(0)
− 1


f (x, t) dx

− c
 t

0
ψ(0, s) f (u + c(t − s), t − s) ds.

This is a complicated formula, particularly when compared with
writing ψ(u, t) as the complement of Prabhu’s formula for φ(u, t)
(e.g. equation (5) in Willmot, 2015), nor does it appear to have a
probabilistic interpretation. However, we can see from Prabhu’s
formula that

ψ(u, t) = 1 − e−λt
−

 u+ct

0
f (x, t) dx + c

 t

0
f (u + cs, s) ds

− c
 t

0
f (u + cs, s) ψ(0, t − s)ds.

Equating these two expressions for ψ(u, t)we obtain

φ(u) = e−λtφ(u + ct)+

 u+ct

0
φ(u + ct − x) f (x, t) dx

− c
 t

0
f (u + cs, s) φ(0) ds, (2.2)

which does have a clear probabilistic interpretation. Although
this is not a useful formula for finding φ(u), it is useful in our
subsequent development.

We now obtain a formula for ψ̄(u, t). The objective in obtaining
this formula is not to provide a means of calculating ψ̄(u, t), since
the most efficient approach to this is to deduct φ(u) from Prabhu’s
formula as

ψ̄(u, t) = ψ(u)− ψ(u, t) = φ(u, t)− φ(u).

Rather, we seek a formula with a clear probabilistic interpretation
that points the way to solutions to other problems. We see from
Eq. (2.2) and Prabhu’s formula that

ψ̄(u, t) = e−λt ψ(u + ct)+

 u+ct

0
ψ(u + ct − x) f (x, t) dx

− c
 t

0
ψ̄(0, t − s) f (u + cs, s) ds (2.3)

with ψ̄(0, t) = ψ(0) − ψ(0, t). Eq. (2.3) has a simple inter-
pretation—the first two terms allow for ruin to occur from time t
with the surplus at time t being u+ ct − x, where 0 ≤ x < u+ ct is
the aggregate claim amount at time t , and the final term adjusts for
realisations of the surplus process that have caused ruin to occur
before time t , using the same arguments as in Prabhu’s formula.

Building on this interpretation, it follows that

Ḡ(u, y, t) = e−λt G(u + ct, y)

+

 u+ct

0
G(u + ct − x, y) f (x, t) dx

− c
 t

0
Ḡ(0, y, t − s) f (u + cs, s) ds. (2.4)

This allows us to find G(u, y, t) since the function G(u, y) is well-
documented (e.g. Gerber et al., 1987 and Drekic et al., 2004), and
we can find G(0, y, t) easily, for example from equation (24) of
Willmot (2015) which is just

G(0, y, t) =

 t

0

 y

0
w(0, x, s) dx ds,

wherew(0, x, s) is the (defective) joint density of the deficit at ruin
(x) and the time of ruin (s) when u = 0, a formula forwhich is given
in Dickson (2007).

We make two observations about formula (2.4). First, it seems
a much simpler formula to apply to obtain G(u, y, t) (as G(u, y) −

Ḡ(u, y, t)) than formula (22) of Willmot (2015). In particular, the
first two terms of (2.4) are simpler than the first two terms of
Willmot’s (22), whilst the third terms in (2.4) and Willmot’s (22)
are very similar. If our objective is simply to obtain the joint
distribution function of T and |UT | then (2.4) is a useful formula.
However, it does not seem like a useful formula to obtain the joint
density of T and |UT | (nor does formula (22) of Willmot, 2015);
in particular it is not obvious to the author how to obtain the
expression for the joint density of T and |UT | given in Dickson
(2007) by differentiating (2.4).

Extending the previous interpretation, and now including the
surplus prior to ruin, if we define

H(u, z, y) = Pr(T < ∞, UT− ≤ z, |UT | ≤ y|U0 = u),
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