
Insurance: Mathematics and Economics 60 (2015) 1–10

Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Bayesian nonparametric predictive modeling of group health claims
Gilbert W. Fellingham a,∗, Athanasios Kottas b, Brian M. Hartman c

a Brigham Young University, USA
b University of California, Santa Cruz, USA
c University of Connecticut, USA

h i g h l i g h t s

• Models employed for healthcare data are parametric and relatively inflexible.
• A more flexible, nonparametric model outperforms the current methods.
• Improved predictions for 84% of renewals and 88% of new policies.
• Effective models are important as healthcare costs rise around the world.
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a b s t r a c t

Models commonly employed to fit current claims data and predict future claims are often parametric
and relatively inflexible. An incorrect model assumption can causemodel misspecification which leads to
reduced profits at best and dangerous, unanticipated risk exposure at worst. Even mixture models may
not be sufficiently flexible to properly fit the data. Using a Bayesian nonparametric model instead can
dramatically improve claim predictions and consequently risk management decisions in group health
practices. The improvement is significant in both simulated and real data from a major health insurer’s
medium-sized groups. The nonparametric method outperforms a similar Bayesian parametric model,
especially when predicting future claims for new business (entire groups not in the previous year’s data).
In our analysis, the nonparametric model outperforms the parametric model in predicting costs of both
renewal and new business. This is particularly important as healthcare costs rise around the world.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

AsGeorge Box famously said, ‘‘essentially, allmodels arewrong,
but some are useful’’ (Box and Draper, 1987). This is especially
true when the process being modeled is either not well under-
stood or the necessary data are unavailable. Both are concerns in
health insurance. Our knowledge of the human body and under-
standing of what makes it sick are limited, but the main difficulty
is lack of available data; limited by both technology/cost (e.g. DNA
sequences and complete blood panels) and privacy (e.g. patient
records especially of prospective policyholders). This is even more
prevalent in group healthwhere data on the individual policyhold-
ers can be sparse. Bayesian nonparametric (BNP)models are a flex-
ible option to describe both current and prospective healthcare

∗ Correspondence to: 223H TMCB, Provo, UT 84602, USA. Tel.: +1 801 422 2806;
fax: +1 801 422 0635.

E-mail address: gwf@byu.edu (G.W. Fellingham).

claims. As will be shown, in modeling group health claims BNP
models are superior to traditional Bayesian parametric models.
Both model types could be used in premium calculations for
small groups or prospective blocks of business, and to calculate
experience-based refunds. Precise estimation is especially impor-
tant now as healthcare costs continue to consume an increasing
share of personal wealth around the world. The importance of
proper prediction is exemplified and described in both Klinker
(2010) and Harville (2014).

One of the principles of Bayesian methods very familiar to ac-
tuaries is improvement in the process of estimating, say, the pure
premium for a block of business by ‘‘borrowing strength’’ from re-
lated experience through credibility. For example, if the size of a
block is small enough, the exposure in previous years may be lim-
ited. In this case, estimates of future costsmay be basedmore heav-
ily on other, related experience in an effort to mitigate the effects
of small sample random variation. We refer to Klugman (1992) for
a thorough review of credibility, especially from a Bayesian per-
spective.
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Hierarchical Bayesian models offer an extremely useful para-
digm for prediction in this setting. However, in somewhat sim-
plistic terms, successful Bayesian model specification hinges on
selecting scientifically appropriate prior distributions. When there
is anunanticipated structure in the functiondefining theprior, pos-
terior distributions (and prediction) will, by definition, be flawed.

This leads us to consider a Bayesian nonparametric model for-
mulation. Bayesian nonparametric methods build from prior mod-
els that have large support over the space of distributions (or
other functions) of interest. An increased probability of obtain-
ing more precise prediction comes with the increased flexibility
of BNPmethods. We refer to Dey et al. (1998), Walker et al. (1999),
Müller and Quintana (2004), Hanson et al. (2005), and Müller and
Mitra (2013) for general reviews on the theory, methods, and ap-
plications of Bayesian nonparametrics. We also refer to Zehnwirth
(1979) for an early application of BNP methods in credibility. In
this paper, wewill demonstratewhy BNPmethods are usefulwhen
building statistical models, especially when prediction is the pri-
mary inferential objective.

A brief outline of the paper follows. First, we specify themathe-
matical structure of themodels in the full parametric and nonpara-
metric settings. The parametric model is described first since the
nonparametric setting parallels and extends the parametric set-
ting. We provide more detail for the nonparametric setting since
it is less familiar. Additionally, we provide the algorithms neces-
sary to implement the nonparametric model in the Appendix. We
next present a small simulation study to demonstrate the perfor-
mance of the twomodels in situations where the structure used to
generate the data is known. Finally, we present results from anal-
yses of claims data from 1994 and compare the two formulations
by evaluating their performance in predicting costs in 1995.

2. The models

2.1. The hierarchical parametric Bayes model

We present the traditional parametric Bayesian model first
since the nonparametric formulation is based on the parametric
version. To develop the parametric model, we need to characterize
the likelihood and the prior distributions of the parameters
associated with the likelihood. There are two things to consider
when thinking about the form of the likelihood: the probability a
claim will be made and the amount of the claim, given a claim is
made. The probability a claim is made differs from group to group
and in our data is around0.70. Thus, about 30%of the data are zeros,
meaning no claim was filed for those particular policies. We chose
to deal with this by using a likelihood with a point mass at zero
with probability πi for group i. The parameter πi depends on the
group membership.

The cost of a claimgiven that a claim is paid is positively skewed.
We choose a gamma density for this portion of the likelihood with
parameters γ and θ . In a previous analysis of this data, Fellingham
et al. (2005, p. 11) indicated that ‘‘the gamma likelihood for the
severity data is not rich enough to capture the extreme variability
present in this type of data’’. However, we will show that with the
added richness furnished by the nonparametric model, the gamma
likelihood is sufficiently flexible to model the data.

Let f (y; γ , θ) denote the density at y of the gamma distribution
with shape parameter γ and scale parameter θ . Hence,

f (y; γ , θ) =
1

θγ Γ (γ )
yγ−1 exp


−y
θ


. (1)

The likelihood follows using a compound distribution argu-
ment:
Ng
i=1

Li
ℓ=1


πiI(yiℓ = 0) + (1 − πi)f (yiℓ; γi, θi)I(yiℓ > 0)


, (2)

where i indexes the group number, Ng is the number of groups, ℓ
indexes the observationwithin a specific group, Li is the number of
observations within group i, πi is the proportion of zero claims for
group i, θi and γi are the parameters for group i, yiℓ is the cost per
day of exposure for each policyholder, and I denotes the indicator
function. Thus, we have a point mass probability for yiℓ = 0 and a
gamma likelihood for yiℓ > 0.

As discussed in the opening section, the choice of prior
distributions is critical. One of the strengths of the full Bayesian
approach is the ability it gives the analyst to incorporate
information from other sources. Because we had some previous
experience with the data that might have unduly influenced our
choices of prior distributions, we chose to use priors thatwere only
moderately informative. These priors were based on information
available for other policy types. We did not use any of the
current data to make decisions about prior distributions. Also, we
performed a number of sensitivity analyses in both the parametric
and the nonparametric settings and found that the resultswere not
sensitive to prior or hyperprior specification in either case.

For the first stage of our hierarchical prior specification, we
need to choose random-effects distributions for the parameters πi
and (γi, θi). We assume independent components conditionally on
hyperparameters. In particular,

πi | µπ

ind.
∼ Beta(µπ , σ 2

π ), i = 1, . . . ,Ng ,

γi | β
ind.
∼ Gamma(b, β), i = 1, . . . ,Ng ,

θi | δ
ind.
∼ Gamma(d, δ), i = 1, . . . ,Ng .

(3)

Here, to facilitate prior specification, we work with the Beta
distribution parameterized in terms of its mean µπ and variance
σ 2

π , that is, with density given by

1
Be(c1, c2)

π c1−1(1 − π)c2−1, π ∈ (0, 1), (4)

where c1 = σ−2
π (µ2

π −µ3
π −µπσ 2

π ), c2 = σ−2
π (µπ −2µ2

π +3µ3
π −

σ 2
π + µπσ 2

π ), and Be(·, ·) denotes the Beta function, Be(r, t) = 1
0 ur−1(1 − u)t−1du, r > 0, t > 0 (Forbes et al., 2011). We

choose specific values for the hyperparameters σ 2
π , b, and d and

assign reasonably non-informative priors to µπ , β and δ. We note
that sensitivity analyses showed that the values chosen for the
hyperparameters had virtually no impact on the outcome. For the
prior distributions, we take a uniform prior on (0, 1) for µπ and
inverse gamma priors for β and δ with shape parameter equal
to 2 (implying infinite prior variance) and scale parameters Aβ

and Aδ , respectively. Hence, the prior density for β is given by
A2

ββ−3 exp(−Aβ/β) (with an analogous expression for the prior of
δ). Further details on the choice of the values for σ 2

π , b, d, Aβ , and
Aδ in the analysis of the simulated and real data are provided in
Sections 3 and 5, respectively.

The posterior for the full parameter vector

({(πi, γi, θi) : i = 1, . . . ,Ng}, µπ , β, δ)

is then proportional to
Ng
i=1

β−b

Γ (b)
γ b−1
i exp


−γi

β


δ−d

Γ (d)
θd−1
i

× exp


−θi

δ


1

Be(c1, c2)
π

c1−1
i (1 − πi)

c2−1


×


Ng
i=1

Li
ℓ=1

{πiI(yiℓ = 0) + (1 − πi)f (yiℓ; γi, θi)

× I(yiℓ > 0)}


p(µπ )p(β)p(δ), (5)
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