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a b s t r a c t

This paper deals with the optimal reinsurance problem if both insurer and reinsurer are facing risk and
uncertainty, though the classical uncertainty free case is also included. The insurer and reinsurer degrees
of uncertainty do not have to be identical. The decision variable is not the retained (or ceded) risk, but
its sensitivity with respect to the total claims. Thus, if one imposes strictly positive lower bounds for this
variable, the reinsurer moral hazard is totally eliminated.

Three main contributions seem to be reached. Firstly, necessary and sufficient optimality conditions
are given in a very general setting. Secondly, the optimal contract is often a bang–bang solution, i.e., the
sensitivity between the retained risk and the total claims saturates the imposed constraints. Thirdly, the
optimal reinsurance problem is equivalent to other linear programmingproblem, despite the fact that risk,
uncertainty, andmany premium principles are not linear. This may be important because linear problems
may be easily solved in practice, since there are very efficient algorithms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since Borch (1960) andArrow (1963) published their celebrated
seminal papers, the optimal reinsurance problem has been ad-
dressed by many authors and under many different risk measure-
ment methods and premium principles. Recent approaches are,
amongstmany others, Kaluszka (2005), Cai and Tan (2007), Chi and
Tan (2013), Tan and Weng (2014) or Cheung et al. (2014). Usually,
researchers consider the insurer point of view, though the rein-
surer viewpointmay be also incorporated (Cai et al., 2012, Cui et al.,
2013, etc.). An interesting survey about the State of the Art in 2009
may be found in Centeno and Simoes (2009).

All the papers above assume that the statistical distribution
of claims is known. Nevertheless, measurement errors or lack of
complete informationmay provoke discrepancies between the real
and the estimated probabilities of the states of nature, generating
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uncertain (also called ambiguous) frameworks. Actuarial and
financial literature is recently paying significant attention to those
cases where the probabilities of the scenarios are not totally
known. Interesting examples are, among many others, portfolio
management (Zhu and Fukushima, 2009), equilibrium in asset
markets (Bossaerts et al., 2010), optimal stopping (Riedel, 2009)
and insurance pricing (Pichler, 2014).

The first objective of this paper is to incorporate ambiguity in
the optimal reinsurance problem, thoughmany results will be also
new in the uncertainty free setting. Both insurer and reinsurermay
be ambiguous, but their degrees of ambiguity do not have to be
identical. Since the reinsurer information about the reinsured set
of policies could be lower than the information of the insurer, it
seems natural to assume that the reinsurer ambiguity is higher,
but wewill not impose this hypothesis becausewewill not need it.
According to the empirical evidence and the famous Ellsberg para-
dox, agents usually reflect ambiguity aversion, so we will accept
this assumption in our analysis. Though there are other recent ap-
proaches (Maccheroni et al., 2006), the worst-case principle prop-
erly incorporates the ambiguity aversion (Gilboa and Schmeidler,
1989), and therefore our analysiswill dealwith this principlewhen
considering the insurer expected wealth, the insurer global risk
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(integrating uncertainty too) and the reinsurer premium principle.
Actually, all of the papers above deal with ambiguity by means of
a worst-case approach.

Stop-loss or closely related contracts frequently solve the
optimal reinsurance problem. These solutions have been often
criticized by both theoretical researchers and practitioners. In
practice, reinsurers will rarely accept these solutions due to the
lack of incentives of the insurer to verify claims beyond some
thresholds. Our second objective will be to overcome this caveat.
Consequently, the insurer decision variable will be the (almost ev-
erywhere) mathematical derivative of the retained risk with re-
spect to the global claims, rather than the retained risk itself. With
this modification we can impose positive lower bounds to this de-
cision variable, and therefore contracts reflecting spreadswith null
derivative (flat behavior of the retained risk with respect to the
global claims) become unfeasible. In other words, the usual rein-
surer moral hazard is eliminated with this approach.

The paper is organized as follows. Section 2 will present the
general framework, the set of priors, the properties of the insurer
risk measure (integrating uncertainty), the properties of the rein-
surance premium principle (which may incorporate the reinsurer
uncertainty) and the general optimal reinsurance problem we are
going to deal with. We will point out how our approach contains
most of the usual cases and extends them all if ambiguity arises.
Section 3will be devoted to dealingwith twodual approaches. The-
orems 4 and 5 will provide us with two alternative dual problems,
as well as two different families of necessary and sufficient opti-
mality conditions. It is worth to point out that one of the duals is
linear.

The optimality conditionswill generate two different ways per-
mitting us to linearize the optimal reinsurance problem. The first
one is the introduction of a linear optimization problem generated
by a dual solution. This method will allow us to prove Theorem 7
in Section 4, which will give sufficient conditions to guarantee that
the optimal retention is a bang–bang contract, i.e., a contract such
that the derivative of the retained risk with respect to the total one
saturates the imposed constraints. A clear consequence is that in
many classical approaches one must find stop-loss or closely re-
lated optimal contracts. In our less restrictive framework the opti-
mal retention will be often a bang–bang solution.

Section 5 explores a second linearization procedure. In order
to simplify the exposition the focus is on the Robust Conditional
Value at Risk (robust CVaR) as an insurer risk/ambiguity measure
and a reinsurer instrument to generate the premium principle.
The method applies for much more situations, but selecting one
important case we significantly shorten the paper. Furthermore,
the CVaR is becoming more and more popular among researchers
and practitioners due to its interesting properties (Ogryczak and
Ruszczynski, 2002).

Since one of the two duals of Section 3 is linear, we will con-
struct the double-dual (dual of the dual) optimal reinsurance prob-
lem in Section 5, which is linear too. We will prove that the
solution of the double-dual will directly lead to the optimal rein-
surance contract. This seems to be a very important property be-
cause there are many efficient algorithms solving linear problems
in both finite-dimensional and infinite-dimensional frameworks
(Anderson and Nash, 1987). Besides, linear problems often lead to
extreme solutions, which explain why the nonlinear optimal rein-
surance problem may be solved by a bang–bang retention.

The last section of the paper summarizes the most important
conclusions, emphasizing the two main novelties (uncertainty
introduction and moral hazard elimination) and the three main
contributions (necessary and sufficient optimality conditions,
bang–bang solutions and double-dual linear problems).

Throughout the paper we will need several mathematical
notions about topological spaces, Banach and Hilbert spaces, weak

convergences, etc. Some of them will be briefly summarized, but
further discussions may be found in Luenberger (1969), Kelly
(1975), Rudin (1973, 1987), or Anderson andNash (1987), amongst
others.

2. The optimal reinsurance problem

Consider the random total cost (claims) that an insurer will pay
within a period [0, T ]. This cost cannot achieve negative values, and
the existence of an upper bound M is obvious too (claims cannot
be higher than the value of the insured goods). Thus, we can deal
with the Borel σ -algebra B of [0,M] in order to represent the in-
formation that will be available at T about claims. Furthermore, if
we assume that the insurer is ambiguous (or reflects uncertainty)
with respect to the probabilities associated with the cost of claims,
then her/his uncertainty level may be given by a set P 0

U of proba-
bility measures (or set of priors) on B.

2.1. The set of priors

Next, let us give the main properties that P 0
U will have to

satisfy. Denote by P the set of probability measures on B and fix
IP0 ∈ P . Consider the Hilbert space L2 (IP0), which is composed of
those random variables xwhose square has finite expectationwith
respect to IP0 and which is endowed with the norm

∥x∥(2,IP0) =

 M

0
x2 (t) dIP0 (t)

1/2
, x ∈ L2 (IP0) . (1)

Similarly, consider the usual Lebesgue measure on [0,M] and the
classical Hilbert space L2 [0,M].1 Thewell-knownnormof L2 [0,M]
is given by

∥x∥2 =

 M

0
x2 (t) d (t)

1/2
, x ∈ L2 [0,M] . (2)

We will assume the existence of R ∈ L2 (IP0), R ≥ 1, such that

P 0
U =


p ∈ P ; 0 ≤

dp
dIP0

≤ R


, (3)

dp
dIP0

denoting the Radon–Nikodym derivative of p with respect
to IP0. If the operator IEp denotes mathematical expectation with
respect to a probability measure p, and, in particular, IEIP0 denotes
mathematical expectation with respect to IP0, the set of priors (3)
may be also given by

PU =

f ∈ L2 (IP0) ; 0 ≤ f ≤ R, IEIP0 (f ) = 1


, (4)

since we can obviously identify every IP0-continuous probability
measure p ∈ P 0

U with its Radon–Nikodym derivative f =
dp
dIP0

.
In other words, the insurer uncertainty will be identified with a
subset of the interval [0, R] ⊂ L2 (IP0). Though it is an abuse of
language, we will also say the (4) is the set of the insurer priors.

The set of priors (3) is very general. Firstly, if R = 1 then the
non-ambiguous (or uncertainty free) case will be included in our

1 The role of L2 (IP0) and of L2 [0,M] may be plaid by other spaces of random
variables such as Lq (IP0) and Lq [0,M] with q > 1. Most of the results of this
paper may be extended. Nevertheless, to the best of our knowledge, Theorem 10
in Section 5 cannot be extended. The presented proof does not apply for q ≠ 2. The
reason is that Lq (IP0) and Lq [0,M] are not Hilbert spaces if q ≠ 2, which implies
that conditional expectations cannot be interpreted as orthogonal projections. Since
the constraint q = 2 simplifies the mathematical exposition and does not seem to
restrict the real life applications of this paper, we have decided to impose it, though
it would have been sufficient to introduce this constraint in Theorem 10.
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