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a b s t r a c t

Drawdown measures the decline of portfolio value from its historic high-water mark. In this paper, we
study a lifetime investment problem aiming at minimizing the risk of drawdown occurrences. Under the
Black–Scholes framework, we examine two financial market models: a market with two risky assets, and
amarket with a risk-free asset and a risky asset. Closed-form optimal trading strategies are derived under
both models by utilizing a decomposition technique on the associated Hamilton–Jacobi–Bellman (HJB)
equation. We show that it is optimal to minimize the portfolio variance when the fund value is at its
historic high-water mark. Moreover, when the fund value drops, the proportion of wealth invested in the
assetwith a higher instantaneous rate of return should be increased.We find that the instantaneous return
rate of the minimum lifetime drawdown probability (MLDP) portfolio is never less than the return rate of
the minimum variance (MV) portfolio. This supports the practical use of drawdown-based performance
measures in which the role of volatility is replaced by drawdown.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Drawdown, measuring the decline of portfolio value from its
historic high-watermark, is a frequently quoted riskmetric to eval-
uate the performance of portfolio managers in the fund manage-
ment industry (see, e.g., Burghardt et al., 2003). Drawdown focuses
primarily on extreme downward risks (as opposed to other stan-
dard risk measures such as volatility and Beta), making it partic-
ularly relevant for risk management purposes. Also, drawdown
can easily be measured and interpreted by both portfolio man-
agers and clients. A significant drawdown not only leads to large
portfolio losses but may also trigger a long-term recession. Bailey
and Lopez de Prado (2015) recently provided some justification to
the so-called ‘‘triple penance rule’’, where the recovery period was
shown to be on average three times as long as the time to pro-
duce a drawdown. Also, drawdown is considered a key determi-
nant of sustainable investments as investors tend to overestimate
their tolerance to risk. For instance, a sharp drop in portfolio’s value
is often accompanied by investors exercising their fund redemp-
tion options. Moreover, investors tend to assess their investment
success by comparing their current portfolio value to the histor-
ical maximum value. This resulted in much hardship during the
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global financial crisis of 2008 when substantial drops in portfolio
valuewere experienced across the board. Therefore, portfolioman-
agers have strong incentives to adopt strategies with low draw-
down risks (and more stable growth rate).

Portfolio optimization problems related to drawdown risks
have long focused on maximizing the long-term (asymptotic)
growth rate of a portfolio subject to a strict drawdown constraint.
Grossman and Zhou (1993) pioneered this research topic by con-
sidering a market model with a risky asset and a risk-free asset in
the Black–Scholes framework. This problem has been extended to
amulti-asset framework and a general semimartingale framework
by Cvitanic and Karatzas (1995) and Cherny and Obloj (2013), re-
spectively. Klass and Nowicki (2005) later showed that the strat-
egy proposed by Grossman and Zhou (1993) is not always optimal
in a discrete-time setting. Moreover, the objective tomaximize the
long-term growth rate has been criticized because any strategy
which coincides with the optimal strategy of Grossman and Zhou
(1993) after any fixed time is optimal. Roche (2006) studied the
infinite-horizon optimal consumption–investment problem for a
power utility subject to the same drawdown constraint. Elie and
Touzi (2008) later extended Roche (2006) to a general class of
utility functions. Portfolio optimization problems with drawdown
constraints are also considered in discrete-time settings (see, e.g.,
Chekhlov et al., 2005 and Alexander and Baptista, 2006).

In this paper, we consider the optimization problem of
minimizing the probability that a significant drawdown occurs
over a lifetime investment. Mathematically speaking, our problem
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is formulated as follows. On a filtered complete probability space
(Ω,F , F = {Ft}t≥0, P) satisfying the usual conditions, we
consider a F -progressively measurable trading strategy π =

{πt}t≥0. The associated fund value process is denoted by Wπ
=

Wπ
t


t≥0 with initial value W0 = w > 0. We define the (floored)

running maximum of the fund value at time t by

Mπ
t = max


sup
0≤s≤t

Wπ
s ,m


,

with m ≥ w. Note that the initial values w and m are fixed posi-
tive constants, and hence are independent of the trading strategy
π . The ratios (Mπ

t − Wπ
t )/M

π
t andWπ

t /M
π
t are respectively called

the relative drawdown level and the relative fund level at time t . To
quantify and measure the drawdown risk, for a fixed significance
level α ∈ (0, 1), we define

τπα = inf

t ≥ 0 : Mπ

t − Wπ
t > αMπ

t


,

to be the first time the relative drawdown of the fund valueWπ ex-
ceeds the significance level 100α%. Equivalently, the event (τπα >
t) for some fixed t > 0 implies that the relative drawdown of the
fund value in time period [0, t] never exceeds α.

Our main objective is to solve for the optimal trading strategy
π∗

=

π∗
t


t≥0 that minimizes the probability that a relative

drawdown of size over α occurs before eλ, the random time of
death of a client with constant force of mortality λ > 0, i.e.,

min
π∈Π

P

τπα < eλ|W0 = w,M0 = m


, (1.1)

whereΠ is the set of admissible trading strategies defined as

Π =


π : π is F -progressively measurable and t

0
π2
s ds < ∞ for any t ≥ 0


. (1.2)

Thus, eλ is an F -measurable exponentially distributed random
variable with mean 1/λ > 0, independent of the fund value
process by assumption. For ease of notation, we denote the
objective function in (1.1) as

ψ(w,m) = min
π∈Π

Pw,m

τπα < eλ


= min

π∈Π
Ew,m[e−λτπα ], (1.3)

where the last equation is due to the independence of τπα and eλ.
Here and henceforth, wewrite Ew,m[ · ] = E[ · |W0 = w,M0 = m].

The present work proposes tominimize the lifetime drawdown
probability rather than impose a strict drawdown constraint, as is
commonly done in the literature. This is because a strict drawdown
constraint may not be attainable in some contexts (such as those
discussed in Sections 2 and 3). As for other similar optimization
problems (e.g., the minimum lifetime ruin probability (MLRP) of
Young (2004), Bayraktar and Young (2007), Bayraktar and Zhang
(2015) and references therein), we consider the drawdown proba-
bility over the lifetime of a client with a constant force of mortal-
ity. For the treatment of non-constant forces of mortality, one may
adopt the approximative scheme of Moore and Young (2006). Fi-
nally, the solution of our resulting Hamilton–Jacobi–Bellman (HJB)
equation does not possess a simple form, which makes its solution
form difficult to guess. Instead, we decompose the HJB equation
into two nonlinear equations of first order which are solved con-
secutively.

We point out that a recent paper by Angoshtari et al. (2015b)
also studied theminimumdrawdownprobability problembut over
an infinite-time horizon. By utilizing the results of Bäuerle and
Bayraktar (2014), the authors found that the minimum infinite-
time drawdown probability (MIDP) strategy coincides with the
minimum infinite-time ruin probability (MIRP) strategy which
consists in maximizing the ratio of the drift of the value process

to its volatility squared. However, we point out that such a
relationship does not hold for a random (or finite) maturity setting
such as in (1.3) as the time-change arguments in Bäuerle and
Bayraktar (2014) do not apply.

We will study the MLDP problem (1.3) by examining two
different market models: a market with two risky assets and a
market with a risk-free asset and a risky asset. We point out
that several conclusions and implications of market model I are
determinant to the subsequent analysis of market model II. Also,
the following financial implications hold for both market models:
(1) it is optimal to minimize the portfolio’s variance when the
fund value is at its historic high-water mark; (2) when the fund
value drops, it is optimal to increase the proportion invested in
the asset with a higher instantaneous rate of return (even though
its volatility may also be higher). It follows that the instantaneous
return rate of theMLDP strategy is never less than the return rate of
theminimum variance (MV) strategy, which supports the practical
use of drawdown-based performance measures.

The rest of the paper is organized as follows. The parallel
Sections 2 and 3 are respectively devoted to the market models
I and II. For each model, we provide a verification theorem,
obtain closed-formexpressions for theMLDPand its corresponding
optimal trading strategy, as well as prove some properties of
the optimal trading strategy. At the end of each section, we
complement the analysis with some numerical examples.

2. Market model I

In this section, we study problem (1.3) under the market model
consisting of two risky assets. We assume that the ith risky asset
(i = 1, 2) is governed by a geometric Brownian motion with
dynamics

dS(i)t = µiS
(i)
t dt + σiS

(i)
t dB(i)t , S(i)0 > 0,

where µi ∈ R, σi > 0, and {B(i)t }t≥0 is a standard Brownian motion
on the filtered probability space (Ω,F , F , P). In addition, {B(1)t }t≥0

and {B(2)t }t≥0 are assumed to be dependent with

dB(1)t dB(2)t = ρdt,

where ρ ∈ (−1, 1) is the correlation coefficient. To avoid triviality,
we exclude cases where the two assets are either perfectly
positively or negatively correlated. Given a trading strategyπ ∈ Π

defined in (1.2), where πt represents the fraction of wealth invested
in Asset 1 at time t , the evolution of the fund value process Wπ is
governed by

dWπ
t = πtWπ

t
dS(1)t

S(1)t

+ (1 − πt)Wπ
t
dS(2)t

S(2)t

= (πtµ1 + (1 − πt) µ2)Wπ
t dt + πtWπ

t σ1dB
(1)
t

+ (1 − πt)Wπ
t σ2dB

(2)
t (2.1)

with initial valueW0 = w > 0.

2.1. Verification theorem

We first prove a verification theorem for the MLDP. By a
dimension reduction, theMLDP problem (1.3) will later be reduced
to a one-dimensional stochastic control problem.

Let

D =

(w,m) ∈ R2

: m (1 − α) ≤ w ≤ m and m > 0

,

and define a differential operator Lβ (β ∈ R) as

Lβ f = (βµ1 + (1 − β)µ2) xfx

+
1
2


β2σ 2

1 + (1 − β)2 σ 2
2 + 2ρβ (1 − β) σ1σ2


x2fxx − λf ,
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