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In a classical Black-Scholes market, we establish a connection between two seemingly different ap-
proaches to continuous-time utility optimization. We study the optimal consumption, investment, and
life insurance decision of an investor with power utility and an uncertain lifetime. To separate risk aversion
from elasticity of inter-temporal substitution, we introduce certainty equivalents. We propose a time-
inconsistent global optimization problem, and we present a verification theorem for an equilibrium con-
trol. In the special case without mortality risk, we discover that our optimization approach is equivalent
to recursive utility optimization with Epstein-Zin preferences in the sense that the two approaches lead
to the same result. We find this interesting since our optimization problem has an intuitive interpretation
as a global maximization of certainty equivalents and since recursive utility, in contrast to our approach,
gives rise to severe differentiability problems. Also, our optimization approach can there be seen as a gen-
eralization of recursive utility optimization with Epstein-Zin preferences to include mortality risk and life
insurance.
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1. Introduction

In a classical Black-Scholes market, we establish a connection
between two seemingly different approaches to continuous-time
utility optimization for a certain-lived investor. One approach
is recursive utility optimization with Epstein-Zin preferences,
studied in Duffie and Epstein (1992) and Kraft and Seifried (2010)
for general preferences. The other approach is non-linear expected
power utility optimization with dynamic updating, studied in this
paper for an uncertain-lived investor. This approach is apt for a set-
up with mortality risk and utility from inheritance, and because
of the established connection for a certain-lived investor, our
approach can be seen as a generalization of the recursive utility
approach to a set-up with mortality risk and life insurance.

Over time, the optimal consumption and investment decisions
of a certain-lived investor have been treated in various papers. An
important, early example is Merton (1971) who considers time-
additive utility optimization in continuous time. Using dynamic
programming techniques, the value function of the time-additive
optimization problem can be characterized by a partial differential
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equation. The equation is called a Hamilton-Jacobi-Bellman equa-
tion, and it includes a term u (c) where u is the investor’s utility
function for consumption and c is the consumption rate.

Richard (1975) generalized the work by Merton (1971) to in-
clude mortality risk and life insurance. The value function, V, of the
generalized optimization problem is characterized by a partial dif-
ferential equation similar to the original Hamilton-Jacobi-Bellman
equation. The main alteration consists in addition of the term

p@ub+x)—pn®VIEx, (1)

where p is the investor’s mortality intensity, i is the investor’s
utility function for inheritance, b is a term insurance sum paid
out upon death, and x is wealth. Also, there is an effect on the
wealth dynamics due to financing of the term insurance. We note
that w (t) i (b + x) can be interpreted as the investor’s probability
weighted utility gain associated with death. Similarly, u (t) V (t, x)
can be interpreted as the investor’s probability weighted utility
loss associated with death. The term in (1) is therefore the
investor’s probability weighted net-gain associated with death.
Unfortunately, time-additive utility has the disadvantage that
it mixes preferences for risk and preferences for inter-temporal
substitution. The recursive utility approach and our approach both
deal with this problem, in two seemingly different ways.
Recursive utility is founded in discrete time, and it allows
for separation of preferences for risk and preferences for inter-
temporal substitution through a recursive definition, a (utility)
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certainty equivalent and a time-aggregator. In Duffie and Epstein
(1992), recursive utility is extended to continuous time where it
is called stochastic differential utility. The link to discrete-time re-
cursive utility is vague though, and in Kraft and Seifried (2010), the
extension is refined and called continuous-time recursive utility. In
both papers, the optimal consumption and investment decisions
of a certain-lived investor are studied. The value function, V, of
the recursive optimization problem is characterized by a Hamil-
ton-Jacobi-Bellman equation (in the following ‘pseudo-Bellman
equation’) where the term u (c) is replaced by a term f (c, V (¢, x)).
Here, f is the normalized aggregator representing the investor’s
preferences. In particular, Epstein-Zin preferences are represented
by the aggregator
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The recursive optimization problem is less intuitive than the time-
additive optimization problem, and to our knowledge, the litera-
ture contains no attempt to extend the recursive utility problem to
a set-up with mortality risk and life insurance. However, inspired
by the mortality extension in Richard (1975), it is natural to sug-
gest a pseudo-Bellman equation where we combine f (c, V) de-
fined above with the additional term p (t) i1 (b 4+ x) — . () V (¢, X).

For Epstein-Zin preferences, we present another suggestion—
namely an alteration of the normalized aggregator (and no
additional term). The altered aggregator arises from the following
optimization approach: we consider an uncertain-lived investor
with power utility. To separate preferences for risk and prefer-
ences for inter-temporal substitution, we introduce consumption
certainty equivalents, and we propose a time-global optimization
problem that is about maximizing an infinite sum of infinites-
imally small certainty equivalents for future consumption and
inheritance. The problem is non-linear in expectation, and conse-
quently it is time-inconsistent in the sense that its solution does
not obey Bellman’s optimality principle. In other words: if we solve
the problem at time 0 and apply the corresponding control up to
a future time point t > 0, then at this future time point, the con-
trol is no longer optimal. For more on time-inconsistency, see e.g.
Bjork et al. (2014) or Bjork and Murgoci (2010). To deal with the
time-inconsistency, we search for an equilibrium control instead
of a classical optimal control, and we present a verification theo-
rem for a particular equilibrium control. The corresponding value
function is characterized by a pseudo-Bellman equation where the
term f (c, V (t, x)) is replaced by the termf (t,c,x+ b,V (t,x)).
Here, the altered aggregatorf is given by
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For a certain-lived investor (i.e. © = 0), the two aggregators f
andf coincide, and so our approach leads to the same result as
recursive utility optimization with Epstein-Zin preferences, for a
certain-lived investor. Because of this equivalence, the aggregatorf
can be seen as a mortality extension of the normalized Epstein-Zin
aggregator—that is, our approach can be seen as a generalization
of the recursive utility approach with Epstein-Zin preferences
to a set-up with mortality risk and life insurance. This proposal
is supported by the fact that our optimization problem has an
intuitive interpretation as a global maximization of certainty
equivalents, both with and without mortality risk. Furthermore,
our approach is a generalization of the time-additive utility
optimization in Richard (1975) to time-non-additive power utility.

Recursive utility is considered as a standard way to separate risk
aversion from elasticity of inter-temporal substitution. We pro-
vide a new way to formalize such a separation where, first, risk
aversion forms certainty equivalents and, then, elasticity of substi-
tution forms time-global preferences. Yet, a completely different
approach to the separation is suggested in Kihlstrom (2009). In dis-
crete time, he suggests to formalize a separation where, first, elas-
ticity of substitution forms time-global preferences and, then, risk
aversion forms one certainty equivalent. Since his formalization is
not immediately tractable with our method, future research should
address further the relation between Kihlstrom’s approach, our ap-
proach, and recursive utility.

We emphasize that our optimization problem is not a special
case of Bjork and Murgoci (2010) as our objective function has
a considerably different form. In particular, their result about
coincidence of solutions for certain time-consistent and time-
inconsistent problems does not explain the equivalence between
our approach and recursive utility optimization with Epstein-Zin
preferences. Also, we wish to focus on our specific investor
problem and not on time-consistency in general, so we do not go
into details on the game-theoretic equilibrium approach.

We work in a simple Black-Scholes market because we wish to
study the qualitative structures of the solution to our optimization
problem. We then avoid drowning our key insights in notation
and multidimensionality, and we avoid resorting to numerical
optimization. For qualitative insight, sticking to a simple model
remains efficient.

Structure of the paper

In Section 2, we propose an optimization problem and introduce
the concept of equilibrium controls. We present a verification
theorem for a particular equilibrium control, and we derive closed-
form expressions for the control and the corresponding value
function. Finally, we compare our results to Richard (1975).

In Section 3, we give a short introduction to recursive util-
ity, and we demonstrate the similarity of our pseudo-Bellman
equation and the pseudo-Bellman equation in Duffie and Epstein
(1992). Also, we outline perspectives of the established equiva-
lence.

In Section 4, we derive a stochastic differential equation for
the optimal consumption rate from Section 2, and we construct
numerical examples to illustrate how it differs from the optimal
consumption rate from time-additive utility. The numerical
examples all arise from the special case without market risk.

2. Optimization problem

2.1. Set-up

We consider an investor making decisions concerning con-
sumption, investment, and life insurance in continuous time. We
adopt the classical survival model, and by N and I = 1 — N, we in-
dicate whether the investor is dead or alive at a given point in time
(e.g. N (t) = 1 if the investor is dead at time t). We treat N and I
as stochastic processes on an abstract probability space (§2, F, P),
and we model the death of the investor by a mortality intensity u,
ie.

PUW)=1)=P((s)=1:s€[0,t]) =e hor®d >
The investor has access to a classical Black-Scholes market
consisting of a bank account, B, with risk free short rate r, and a

stock, S, with excess return A and volatility o. The asset prices are
described by the stochastic differential equations (SDEs)

dB(t) =B(t)rdt, t>0, B(0)=1,

dS() =S [(r+A)dt +ocdW (t)], t >0, S(0) = sg,
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