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h i g h l i g h t s

• We present two maxentropic methods to find a distribution of losses.
• The input consists of a few values of the Laplace transform estimated from the data.
• The density is reconstructed from a large sample of simulated data.
• The quality of the reconstruction is measured by a variety of statistical tests.
• The procedures will be extended to include errors in the data.
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a b s t r a c t

Here we present an application of two maxentropic procedures to determine the probability density
distribution of a compound random variable describing aggregate risk, using only a finite number of
empirically determined fractional moments. The two methods that we use are the Standard method
of Maximum Entropy (SME) and the method of Maximum Entropy in the Mean (MEM). We analyze
the performance and robustness of these two procedures in several numerical examples, in which the
frequency of losses is Poisson and the individual losses are lognormal random variables. We shall verify
that the reconstructions obtained pass a variety of statistical quality criteria, and provide good estimations
of VaR and TVaR, which are important measures for risk management purposes. As side product of
the work, we obtain a rather accurate numerical description of the density of such compound random
variable.

These approaches are also used to develop a procedure to determine the distribution of the individual
losses from the knowledge of the total loss. Thus, if the only information available is the total loss, and
the nature of the frequency of losses is known, the method of maximum entropy provides an efficient
method to determine the individual losses as well.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Both in the insurance and the banking industries it is important
to know how to compute the density of a compound random vari-
able describing an accumulated random number of losses. In the
banking industry this is the first step towards the implementation
of the advanced measurement approach to determine regulatory
capital, and in the insurance industry it is the first step to deter-
mine insurance premia.

∗ Corresponding author.
E-mail address: henryk.gzyl@iesa.edu.ve (H. Gzyl).

To be specific, in this work we shall suppose that the frequency
of losses in a given period of time is described by a compound ran-
domvariable of the type S =

N
j≥0 Xj, whereN is a Poisson random

variable of intensity ℓ, and {Xj, for j = 1, . . . ,N} denote the in-
dividual losses which are independent and identically distributed.
This type of problemshas been studied for a long time, and a variety
of techniques exist for its solution, see for example Panjer (2006),
but techniques like those proposed here are not yet widely used.

From an abstract point of view, our implementation of the
maxentropic methods fall within the techniques to invert Laplace
transform from a few values of the parameter along the real axis.
We have actually tried that in a situation in which the Laplace
transform could be determined analytically and its values along
the real axis are known. In Gzyl et al. (2013) the authors applied
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the SME approach (along with other methodologies) to find the
probability density of a compound random variable, in which the
frequency is Poisson and the individual losses were Γ (a, b). In this
case, the compound density fS may be approximated to any desired
degree and different methods of reconstruction can be compared.

But when the individual losses follow a lognormal distribution,
Laplace transform techniques are hard to implement because,
to begin with, the Laplace transform of a lognormal density is
unknown. To wit, consider the effort to compute it approximately
carried out by Leipnik (1991). Thus, the example that we consider
in this paper is such that a direct analytical solution is not known,
and the standard numerical procedures to determine them are
hard to implement. Here we propose a direct procedure which
we think that is better to solve the problem of determining the
density of the total sum of lognormal individual losses when the
frequency is of the Poisson type through the use of a simulated
sample. We will choose a large enough sample to provide with
the best approximation possible. This is one approximation to the
problem and further extensions include. As this may happen in
many cases of practical interest, our chosen example is typical in
this regard.

Besides that, the lognormal distribution is frequently used to
model individual claims in various classes of insurance business
and in risk theory to model losses caused by different risk events.
The fact that it has a heavy tail is important, because it allows
us consider the possibility of describing very large claims, which
correspond to losses that threaten the solvency of an insurance
company or a bank. This has important implications for the
determination of premiums, risk reserves and reinsurance (Crow
and Shimizu, 1988).

The starting point for us will be the Laplace transform of S(N)
(or S for short)

E[e−αiS] = ψ(αi) =


∞

0
e−αisdFS(s), i = 1, . . . , K (1)

which will be calculated numerically from simulated data. To do
that, set Y = e−S and we transform the Laplace inversion problem
into the problem of inferring the density fY (y) from fractional
moments. For that, we think of the previous identity as follows

ψ(αi) = E[Y α] =

 1

0
yαidFY (y), i = 1, . . . , K . (2)

Note now that, since the distribution FS of S has a point mass e−ℓ at
S = 0, in order to relate theψ(α) to the density fY (y) of Y , we have
to condition out the mass at {Y = 1} (or the mass of FS at {S = 0}).
For that we consider the conditional version

E[e−αiS | S > 0] =

 1

0
yαi fY (y)dy

=
ψ(αk)− e−ℓ

1 − e−ℓ
:= µ(αi), i = 1, . . . , K (3)

which defines the µ(αi) that will be the input for the maxentropic
methods. Once fY has been determined, in order to recover fS we
have to apply the change of variables y = e−s to obtain fS(s) =

e−sfY (e−s).
The two versions of the maximum entropy method presented

in this paper will be used to determine the distribution of the
individual losses from the knowledge of the total severity. Also,
in case we only have a historical record of the total losses and a
model for the frequency of losses is available (and in our case it is),
it is possible to decompound (or to disaggregate) the distribution
of losses and obtain the distribution of individual losses. This could
be useful for a riskmanager thatmaywant to know the distribution
of the individual losses in order to apply any particular corrective
loss prevention policy.

The remainder of the paper is organized as follows. We recall
briefly the basic details of the SME andMEMmethods in Section 2.
In Section 3, we show the results of the implementation of the
SME and MEM approaches to determine the distribution of total
losses. At this point, we mention the SME and the MEM methods
have been applied successfully in a large variety of problems, see
Kapur (1989) for the standard formulation and examples in many
fields. As far as applications in risk and insurance, the reader may
want to check with Berliner (1984), Martin-Löf (1986) or Brocket
(1991) and the several comments by the discussants. Consider as
well Li (2010) and Haberman et al. (2011). Actually, one may say
that the germ of the idea for the method of maximum entropy
appears in the work by Esscher (1932), but the maximum entropy
method as a variational method to determine probability densities
seems to have been first proposed by Jaynes (1957). See also Gzyl
and Velásquez (2011) for details and references, specially to the
method of maximum entropy in the mean, and for a review on
the applications of the standard method of maximum entropy to
finance consider Zhou et al. (2013).

Section 4 is devoted to the computation of two of themost com-
monly used risk measures, namely the VaR and the TVaR using the
maxentropic density as loss probability density. This could be in-
teresting for riskmanagers whomay consider insuring operational
risk losses to decrease the capital charges. Section 5 is devoted
to the complementary problem of decompounding, by means of
which the distribution of individual losses is obtained from the to-
tal loss. In Section 6, we present some concluding remarks. Finally,
in the Appendixwe provide a quick overview of the statistical tests
and graphical tools used to verify the robustness and the quality of
the results.

2. The maxentropic approaches

Below we review the basis of the SME and MEM methods used
to solve the problem of finding the density of the total severity
from the knowledge of a small number of fractionalmoments. Both
maxentropic procedures yield similar and good quality results.
The procedure of maximum entropy in the mean is more general
and contains the standardmaximum entropymethod as particular
case, and it is useful to know about its existence.

2.1. The standard method of maximum entropy (SME)

This is a variational procedure to solve the (inverse) problem
consisting of finding a probability density fY (y) (on [0, 1] in this
case), satisfying the following integral constraints: 1

0
yαk fY (y)dy = µY (αk) for k = 0, 1, . . . , K . (4)

We setα0 = 0 andµ0 = 1 to take care of the natural normalization
requirement on fY (y). The intuition is rather simple: The class of
probability densities satisfying (4) is convex. One can pick up a
point in that class one by maximizing (or minimizing) a concave
(convex) functional (an ‘‘entropy’’) that achieves a maximum
(minimum) in that class. That extremal point is the ‘‘maxentropic’’
solution to the problem. It actually takes a standard computation
to see that, when the problem has a solution, it is of the type

f ∗

K (y) = exp


−

K
k=0

λ∗

ky
αk


(5)

in which the number of moments K appears explicitly. It is usually
customary to write e−λ∗

0 = Z(λ∗)−1, where λ∗
= (λ∗

1, . . . ,
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