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a b s t r a c t

In this paper we generalize a partial integrodifferential equation satisfied by the finite time ruin
probability in the classical Poisson risk model. The generalization also includes the bivariate distribution
function of the time of and the deficit at ruin. We solve the partial integrodifferential equation by Laplace
transforms with the help of Lagrange’s implicit function theorem. The assumption of mixed Erlang claim
sizes is then shown to result in tractable computational formulas for the finite time ruin probability as
well as the bivariate distribution function of the time of and the deficit at ruin. A more general partial
integrodifferential equation is then briefly considered.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the classical Poisson riskmodel, the insurer’s surplus {Ut; t ≥

0} is defined byUt = u+ct−St , t ≥ 0, where u ≥ 0 is the insurer’s
initial surplus, c is the rate of premium income per unit time, and St
is the aggregate claims up to time t . Then St =

Nt
i=1 Yi (with St = 0

if Nt = 0), where {Nt; t ≥ 0} is a Poisson process with Poisson rate
λ, and {Yi; i = 1, 2, . . .} a sequence of independent and identically
distributed (i.i.d.) positive random variables independent of
{Nt; t ≥ 0}. The random variable Yi represents the amount of the
ith claim, and has distribution function (df) P(y) = 1 − P(y) =

Pr(Y ≤ y), y ≥ 0, density function p(y) = P ′(y), mean E(Y ) =
∞

0 yp(y)dy, and Laplace transform (LT) p̃(s) =


∞

0 e−syp(y)dy. The
positive loading condition is assumed, whereby c = (1 + θ)λE(Y )
with θ > 0. The aggregate claims St has mass point Pr(St = 0) =

e−λt at 0, and density f (y, t) for y > 0 given by

f (y, t) =

∞
n=1

(λt)n e−λt

n!
p∗n(y), (1)

where p∗n(y) is the density function of Y1 + Y2 + · · · + Yn for
n = 1, 2, . . . . Then the Laplace transform of f (y, t) is, from (1),

f̃ (s, t) =


∞

0
e−syf (y, t)dy = eλt{p̃(s)−1}

− e−λt , (2)
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and the df F(y, t) = 1 − F(y, t) = Pr(St ≤ y) satisfies

F(y, t) = e−λt
+

 y

0
f (x, t)dx, y ≥ 0. (3)

Of central importance is the time of ruin T = inf{t;Ut < 0},
with T = ∞ if Ut ≥ 0, t ≥ 0. The infinite time ruin probability is
ψ(u) = Pr(T < ∞|U0 = u).

The finite time survival probability (e.g. Asmussen and Al-
brecher, 2010, Chapter V; Takacs, 1962, pp. 55–56; Seal, 1974; Seal,
1978; or Panjer and Willmot, 1992, Section 11.7) is defined to be
φ(u, t) = Pr(Us ≥ 0, 0 ≤ s ≤ t|U0 = u). It is well known that
φ(u, t) satisfies the partial integrodifferential equation

∂

∂t
φ(u, t) = c

∂

∂u
φ(u, t)− λφ(u, t)

+ λ

 u

0
φ(u − x, t)p(x)dx, (4)

and that the solution to (4) may be expressed as

φ(u, t) = F(u + ct, t)− c
 t

0
φ(0, x)

× f (u + c(t − x), t − x) dx, u ≥ 0, (5)

with f (y, t) given by (1), F(y, t) given by (3), and

φ(0, t) =
1
ct

 ct

0
F(y, t)dy. (6)
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The deficit at ruin is |UT | (e.g. Asmussen and Albrecher, 2010),
and the joint df of the time of ruin and the deficit at ruin is
G(u, t, y) = Pr(T ≤ t, |UT | ≤ y|U0 = u). The function G(u, t, y)
satisfies the partial integrodifferential equation

∂

∂t
G(u, t, y) = c

∂

∂u
G(u, t, y)− λG(u, t, y)

+ λ

 u

0
G(u − x, t, y)p(x)dx

+ λ

P(u)− P(u + y)


. (7)

To see (7), note that standard properties of the Poisson process
and the method of infinitesimals yield (for a small time interval
of length h)

G(u, t + h, y) = (1 − λh)G(u + ch, t, y)
+ λh


P(u + ch)− P(u + ch + y)


+ λh

 u+ch

0
G(u + ch − x, t, y)p(x)dx + o(h),

from which (7) follows by rearrangement and letting h → 0. We
remark that Dickson (2012) has analyzed the joint density function
of the time and the deficit using a different approach. The approach
used in this paper is different, resulting in the joint distribution
function.

Motivated by the form of (4) and (7), we consider the partial
integrodifferential equation for a function h(u, t) given by

∂

∂t
h(u, t) = c

∂

∂u
h(u, t)− λh(u, t)

+ λ

 u

0
h(u − x, t)p(x)dx + τ(u). (8)

Clearly, (4) is the special case of (8) with τ(u) = 0, and (7) is the
special case with τ(u) = λ{P(u)− P(u + y)}. Thus, (8) unifies and
generalizes these results.

In Section 2 we solve (8) by Laplace transforms, and express
the solution in terms of the boundary function h(u, 0), which is
assumed to be known (for example,φ(u, 0) = 1 andG(u, 0, y) = 0
based on physical properties of the problem at hand).

In Section 3 we demonstrate that all quantities needed for the
solution of φ(u, t) and G(u, t, y) are readily obtainable without
numerical integration for the important situation when p(y) is
the mixed Erlang density (e.g. Klugman et al., 2013, Chapter 3,
and references therein). In particular, the resulting expression for
the finite time ruin probability in the case of mixed Erlang claims
appears to be simpler than that given by Dickson and Willmot
(2005), which was obtained using Gerber–Shiu based arguments.
Applications to the exponential and ordinary Erlang claim size
distributions are also considered.

A more general equation than (8) is then considered in Sec-
tion 4, where the Laplace transform approach to solution is seen
to still be applicable.

2. The general solution

In order to solve (8), we will employ Laplace transforms. Thus,
define

τ̃ (s) =


∞

0
e−suτ(u)du, (9)

and

h̃1(s, t) =


∞

0
e−suh(u, t)du. (10)

Therefore, taking Laplace transforms of (8), or equivalently, multi-
plying (8) by e−su and integrating with respect to u from 0 to ∞, it
follows from (9) and (10) that

∂

∂t
h̃1(s, t) = c


sh̃1(s, t)− h(0, t)


− λh̃1(s, t)+ λh̃1(s, t)p̃(s)+ τ̃ (s). (11)

Next, define the bivariate LT of h(u, t) to be

h̃(s, z) =


∞

0


∞

0
e−su−zth(u, t)dudt

=


∞

0
e−zt h̃1(s, t)dt, (12)

and the LT of h(0, t) to be

h̃0(z) =


∞

0
e−zth(0, t)dt. (13)

Again, taking Laplace transforms of (11) with respect to t and using
(12) and (13) results in

zh̃(s, z)− h̃1(s, 0) = csh̃(s, z)− ch̃0(z)− λh̃(s, z)

+ λp̃(s)h̃(s, z)+
τ̃ (s)
z
,

which may be expressed as


z − cs + λ


1 − p̃(s)


h̃(s, z) = h̃1(s, 0)+

τ̃ (s)
z

− ch̃0(z). (14)

Before proceeding to the general solution to h(u, t)with bivari-
ate LT h̃(s, z) given by (12), we recall that we assume that h(u, 0)
and hence h̃1(s, 0) is known, and it is of interest to identify h(0, t)
with LT h̃0(z) given by (13). Then, equating the coefficient of h̃(s, z)
in (14) to 0 results in

z − cs + λ

1 − p̃(s)


= 0. (15)

When viewed as a function of s for fixed z, (15) is the classical
Lundberg’s fundamental equation which is of central importance
in Gerber–Shiu analysis (Gerber and Shiu, 1998). In particular, it is
well known that there is a unique root r(z) to (15) with positive
real part, and (any analytic function of) r(z) may be obtained via
Lagrange’s implicit function theorem. See Benes (1957) for details.
We are now in a position to identify h̃0(z) and h(0, t), which is done
in the following theorem.

Theorem 1. The LT (13) satisfies

h̃0(z) =
1
c
h̃1 {r(z), 0} +

1
c
τ̃ {r(z)}

z
, (16)

where s = r(z) is the unique root of (15) with positive real part.
Moreover, h(0, t) is given explicitly by

h(0, t) = e−λth(ct, 0)

+
1
c

∞
n=1

λntn−1e−λt

n!

 ct

0
xp∗n(ct − x)h(x, 0)dx

+

 t

0


e−λvτ(cv)+

1
c

∞
n=1

λnvn−1e−λv

n!

×

 cv

0
xp∗n(cv − x)τ (x)dx


dv. (17)



Download	English	Version:

https://daneshyari.com/en/article/5076518

Download	Persian	Version:

https://daneshyari.com/article/5076518

Daneshyari.com

https://daneshyari.com/en/article/5076518
https://daneshyari.com/article/5076518
https://daneshyari.com/

