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h i g h l i g h t s

• We consider a Sparre Andersen risk model with arbitrary interclaim time distribution.
• The moments of discounted aggregate claim costs until ruin are studied.
• A novel generalization of the discounted density is proposed to analyze the problem.
• Explicit formulae are derived upon assumptions on claims in two detailed examples.
• Numerical illustrations are also given.
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a b s t r a c t

In the context of a Sparre Andersen risk model with arbitrary interclaim time distribution, the moments
of discounted aggregate claim costs until ruin are studied. Our analysis relies on a novel generalization of
the so-called discounted density which further involves a moment-based component. More specifically,
while the usual discounted density contains a discount factor with respect to the time of ruin, we propose
to incorporate powers of the sum until ruin of the discounted (and possibly transformed) claims into
the density. Probabilistic arguments are applied to derive defective renewal equations satisfied by the
moments of discounted aggregate claim costs until ruin. Detailed examples concerning the discounted
aggregate claims and the number of claims until ruin are studied upon assumption on the claim severities.
Numerical illustrations are also given at the end.
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1. Introduction

In this paper, we consider an insurance companywhose surplus
is modelled as a Sparre Andersen (renewal) risk process (Sparre
Andersen, 1957). Mathematically, the surplus level of the company
at time t is given by

U(t) = u + ct −

N(t)
i=1

Yi, t ≥ 0,

where u = U(0) ≥ 0 is the initial capital of the insurer and c > 0
is the incoming premium rate per unit time. In the above defini-
tion, {N(t)}t≥0 is the claim number processwhich is a renewal pro-
cess defined through the sequence of independent and identically
distributed (i.i.d.) positive interclaim times {Vi}

∞

i=1 having common
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distribution as V . More specifically, V1 represents the time of the
first claim and Vi for i = 2, 3, . . . is the time between the (i − 1)-
th claim and the i-th claim. Therefore, if Tn =

n
i=1 Vi denotes the

time of the n-th claim for n = 1, 2, . . . with the convention that
T0 = 0, then N(t) = sup{n ∈ N : Tn ≤ t}. Here we assume that V
is continuous with density k(·). In addition, the claim sizes {Yi}

∞

i=1
are positive continuous random variables which form an i.i.d. se-
quence distributed as Y and independent of {Vi}

∞

i=1, and the density
of Y is denoted by p(·). The time of ruin of {U(t)}t≥0 is defined to
be τ = inf{t ≥ 0 : U(t) < 0}with τ = ∞ if U(t) ≥ 0 for all t ≥ 0.
The positive security loading condition cE[V ] > E[Y ] ensures not
only that the process {U(t)}t≥0 drifts to infinity in the long run but
also that the ruin probability is less than 1 (e.g. Prabhu, 1998, Part
I, Theorems 2 and 7).

TheGerber–Shiu function (or its special cases) proposed byGer-
ber and Shiu (1998) has been studied extensively in the litera-
ture in various Sparre Andersen risk models. Most studies were
conducted under specific distributional assumption on the inter-
claim times. See e.g. Dickson andHipp (2001), Li andGarrido (2004,
2005) and Gerber and Shiu (2005). For Sparre Andersen models
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with general interclaim times and phase-type claims, ruin proba-
bility results can be found in Asmussen and Albrecher (2010, Chap-
ter IX.4), whereas Drekic et al. (2004) showed that the deficit at
ruin is also phase-type. If instead the claims follow exponential
or Coxian distribution, the Gerber–Shiu function was obtained by
Willmot (2007) and Landriault andWillmot (2008) respectively. In
the context of a general (dependent) Sparre Andersen risk model,
Albrecher and Teugels (2006) obtained asymptotic results for the
ruin probability when claims are light-tailed, while further gener-
alizations of Gerber–Shiu function were studied by Cheung et al.
(2010), Woo (2010), Cheung (2011) and Willmot and Woo (2012).

In this paper,we are interested in theGerber–Shiu type function

φn1,n2,δ(u) = E

e−n1δτ


N(τ )
k=1

e−δTk f (Yk)

n2

×w(|U(τ )|) I{τ < ∞}

U(0) = u

, u ≥ 0, (1.1)

where w(·) is the so-called penalty function which only depends
on the deficit at ruin |U(τ )|; I{A} is the indicator function of the
event A; and δ ≥ 0 can either be viewed as a force of interest
or a Laplace transform argument. The variable

N(τ )
k=1 e−δTk f (Yk)

represents the total discounted claim costs until ruin, with f (·)
being the ‘cost’ as a function of a given claim severity. Its
expectation was studied by Cai et al. (2009) and Feng (2009a,b)
who considered the compound Poisson risk process and the phase-
type renewalmodel respectively. Our general analysis ofφn1,n2,δ(u)
in Section 2 does not require any specific assumptions on the cost
function f (·) or the penalty functionw(·). However, when deriving
explicit solutions in Section 3, assumption on f (·) (but notw(·)) is
typically needed. See item 1 of the procedure discussed near the
end of Section 2.

The proposed function defined by (1.1) contains various inter-
esting special cases as follows.

1. If n1 = 1 and n2 = 0, then φ1,0,δ(u) = E[e−δτw(|U(τ )|)
× I{τ < ∞}|U(0) = u] becomes a Gerber–Shiu function in
which the penalty only depends on the deficit.

2. If w(·) ≡ 1, then φn1,n2,δ(u) = E[e−n1δτ (
N(τ )

k=1 e−δTk f (Yk))
n2

× I{τ < ∞}|U(0) = u] can be regarded as the generalized
moment of the discounted claim costs. The ideas of generalized
moments can be found in Badescu and Landriault (2008, Sec-
tion 3.1) (see also Cheung, 2008, Eq. (D.10)) who considered
the discounted dividends payable until ruin. By letting n1 =

0, the ‘ordinary’ moment φ0,n2,δ(u) = E[(
N(τ )

k=1 e−δTk f (Yk))
n2

× I{τ < ∞}|U(0) = u] can be retrieved, and this quantity was
studied by Cheung and Feng (2013, Eq. (2.3)) under a different
class of risk models with Markovian claim arrivals using theo-
ries in piecewise-deterministicMarkovprocesses. However, the
techniques therein do not apply in the present Sparre Ander-
sen risk model with arbitrary interclaim times. If it is further
assumed that f (x) = x, then φ0,n2,δ(u) = E[(

N(τ )
k=1 e−δTkYk)

n2

× I{τ < ∞}|U(0) = u] represents the n2-th moment of dis-
counted aggregate claims until ruin, and it is important to dis-
tinguish it from themoment of discounted aggregate claims un-
til a fixed time considered by Léveillé andGarrido (2001a,b) also
in a renewal risk process (see the end of Section 4).

3. If δ = 0 and w(·) ≡ f (·) ≡ 1, then φn1,n2,0(u) = E[(N(τ ))n2
× I{τ < ∞}|U(0) = u] (which is independent of n1) represents
the n2-th moment of the number of claims until ruin (see e.g.
Landriault et al., 2011, Dickson, 2012 and Frostig et al., 2012).

It is remarked that although the parameter n1 mostly takes
values 1 or 0 and has no physical interpretation in retrieving the
above special cases, general integer values of n1 are required in our
analysis. See Remark 3 for more details.

The paper is organized as follows. In Section 2, we consider
some general properties of the functionφn1,n2,δ(u) defined by (1.1).
In particular, φn1,n2,δ(u) is shown to satisfy a defective renewal
equation. Our derivation is based on a novel generalization of
the well-known discounted density which further involves the
moment-based component (

N(τ )
k=1 e−δTk f (Yk))

n2 . These provide
general guidance as to how explicit formulae for φn1,n2,δ(u) can
be obtained when assumptions on the distribution of the claim
severities and the cost function f (·) aremade. To illustrate how this
works, Section 3 studies in detail (1) the moments of discounted
aggregate claims until ruin for exponential claims, and (2) the
moments of the number of claims until ruin when claims follow
a combination of exponentials. Numerical examples will be the
subject matter of Section 4, whereas Section 5 ends the paper with
some concluding remarks.

2. General consideration

2.1. Classical integral equation by conditioning on the first event

Our first step of the analysis involves the classical approach of
‘conditioning on the time V1 and the amount Y1 of the first claim’.
We shall look at the variable inside the expectation of the quantity
φn1,n2,δ(u). Distinguishingwhether ruin occurs upon the first claim
leads us to

e−n1δτ


N(τ )
k=1

e−δTk f (Yk)

n2

w(|U(τ )|) I{τ < ∞}

= e−n1δV1

e−δV1 f (Y1)

n2
w(|U(V1)|) I{τ = V1}

+ e−n1δ[V1+(τ−V1)]

e−δV1 f (Y1)+ e−δV1

N(τ )
k=2

e−δ(Tk−V1)f (Yk)

n2

×w(|U(τ )|) I{V1 < τ < ∞}

= e−(n1+n2)δV1 f n2(Y1) w(Y1 − [U(0)+ cV1])

× I{U(0)+ cV1 − Y1 < 0} +

n2
j=0


n2

j


e−(n1+n2)δV1 f n2−j(Y1)

× I{U(0)+ cV1 − Y1 ≥ 0}

e−n1δ(τ−V1)


N(τ )
k=2

e−δ(Tk−V1)f (Yk)

j

×w(|U(τ )|) I{τ < ∞}


, (2.1)

which holds almost surely. Noting that the process restarts at level
U(0)+ cV1 − Y1 if the first claim does not cause ruin, we arrive at

φn1,n2,δ(u) =


∞

0
e−(n1+n2)δt


∞

u+ct
f n2(y)

×w(y − (u + ct)) p(y) dy

k(t)dt

+

n2
j=0


n2

j


∞

0
e−(n1+n2)δt

 u+ct

0
f n2−j(y)

×φn1,j,δ(u + ct − y) p(y) dy

k(t) dt. (2.2)
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