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h i g h l i g h t s

• We compare three methods for inverting the Laplace transform of the probability of ultimate ruin.
• A maximum entropy based method, a Fourier inversion based method and a probabilistic (moment based) method.
• The maximum entropy method uses a few fractional (eight in our case) moments as input.
• The probabilistic method needs very high number of moment for appropriate convergence.
• The Fourier inversion method used real values of the Laplace transform. All three agree quite well.
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a b s t r a c t

In this work we present two different numerical methods to determine the probability of ultimate ruin
as a function of the initial surplus. Both methods use moments obtained from the Pollaczek–Kinchine
identity for the Laplace transformof the probability of ultimate ruin. Onemethod uses fractionalmoments
combined with the maximum entropy method and the other is a probabilistic approach that uses integer
moments directly to approximate the density.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The following (Cramer–Lundberg) model is a standardmodel in
the insurance industry. Premiums are collected at a constant rate
c and claims are paid according to a compound process S(t) =N(t)

n≥1 Xn, where N(t) is a Poisson process of intensity λ describing
the total number of claims in [0, t], the individual claims being
described by a collection {Xn}n≥0 of i.i.d. square integrable random
variables, independent ofN(t). At time t the capital of the company
is C(t) = x + ct − S(t), and the time to ruin is defined as

T (x) = inf {t ≥ 0 | C(t) < 0} (1)

where x denotes the initial surplus.What actuarial scientists are af-
ter is the density fT (x)(t) of the c.d.f. FT (x)(t) ≡ ψ(x, t) = P(T (x) ≤

t). Many books and many papers are devoted to the subject and
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give approaches to the estimation of this density. See for exam-
ple Gerber and Shiu (1998) who determine an integro-differential
equation for the joint density of the time to ruin, the surplus prior
to ruin and the deficit at ruin. See also Rolski et al. (1999) where
much of the modeling in insurance risk is described. A more mod-
est objective consists in the study of ψ(x) = limt→∞ ψ(x, t) ≡

P(T (x) < ∞) the probability of ultimate ruin.
A useful technique in applied mathematics consists of deter-

mining a probability density function from the knowledge of its
Laplace transform. For the class of models that we consider, the
Laplace transform of the ruin probability is provided by the Pol-
laczek–Kinchine identity, see for example the volume by Rolski
et al. (1999). The identity states that

ψ̂(α) =
1
α

−
c − λm

cα − λ(1 − LX (α))
. (2)

Here ψ̂(α) =


∞

0 e−αxψ(x)dx, and LX (α) = E[e−αX1 ]. Also, m =

E[X1].

Since the Laplace transform is not continuously invertible (i.e.,
the inverse exists, but it is not continuous), the inverse problem
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consisting of numerically determining ψ(x) is beset with difficul-
ties. This is an important consideration if for example, LX (α) is to
be estimated numerically. For then the errors may get amplified.
Recently Albrecher et al. (2010) and Avram et al. (2011) discuss dif-
ferent methods for computing the inverse Laplace transform. The
latter consider a numerical inversion procedure based on a quadra-
ture rule that uses as stepping stone a rational approximation of
the exponential function in the complex plane. The latter imple-
ment and reviewmuch of the work done using Padé approximants
to invert the Laplace transform. The first of these approaches de-
pends on special assumptions on the underlying distributions, and
on the possibility of extending the Laplace transform to the com-
plex plane. For the second, it may not be possible to guarantee the
positivity of the obtained approximation, and the lack of conver-
gence results does not provide the accuracy of the obtained results.

The method that we propose here uses only the values of the
Laplace transform on the real axis, and therefore does not involve
integration in the complex plane, and are convenient when the
Laplace transform cannot be inverted analytically or cannot be
approximated by a rational function.

As it is well known, Laplace transform inversion on the real line
is a difficult, ill-conditioned, inverse problem. That conclusion is
illustrated in literature through some spot examples. In the case
where the underlying inverse Transform is a probability density
function Gzyl et al. (2013) explicitly built a continuum of func-
tions whose Laplace transforms differ each other by as little as
we want, but such that inverse Transforms are completely dif-
ferent. Thus in the presence of measurement errors (or even in
more extreme cases computer roundoff error)we can expectmany,
indeed infinitely possible solutions having different shape (con-
tinuous or with spikes). Then we cannot ’’filter out’’ spike behav-
ior of the inverse Transform on the basis of numerical values of
Laplace transform alone. The ambiguity may be removed if ground
is provided for selecting one of the possible solutions (for instance,
the ones which are essentially smooth) and rejecting the others.
In other terms, we have to use knowledge of the structural be-
havior of inverse Transform to obtain numerical values. In our
specific case the inverse transform coincides with the continuous
positive function ψ(x). Then MaxEnt density approximation used
((4) below) becomesmeaningful and represents a suitable approx-
imation of ψ(x). MaxEnt method relies upon sound theoretical
results of characterization and entropy convergence and guaran-
tees a positive approximation of the underlying functionψ(x). The
main drawback associated to positivity preserving is represented
by the computational cost. In the sequel we describe recent results
to mitigate the computational cost.

The aim of this note is twofold: On one hand we want to pro-
mote the use of maximum entropy applied to fractional moments
as data to reconstruct probability densities, and we apply it to a
problem of interest in insurance. And on the other hand, we want
to compare our proposal to a (theoretically) good method to re-
construct densities from the knowledge of their collection of inte-
ger moments. As both methods pick up values from the moment
curve, are very different and use exact data, the comparison be-
tween methods has to rely upon several aspects, as input, compu-
tational effort and time, their output.

Preliminarily we observe that

Lemma 1.1. With the notations introduced above

lim
α→0

ψ̂(α) = ψ̂(0) =


∞

0
ψ(x)dx =

λE[X2
1 ]

2(c − λm)
.

The proof can be seen in Asmussen and Albrecher (2010).
Consider now the auxiliary random variable Awith density fA =

ψ(x)/ψ̂(0). Note that if we consider the random variable Y = e−A,

then the Laplace transform of fA can be thought of as the moment
curve of Y , that is

f̂A(α) = E[e−αA
] = E[Y α] ≡ µY (α) =

ψ̂(α)

ψ̂(0)
.

Certainly, once the probability density fY (y) is determined, fA(x)
is obtained by a simple change of variables. Thus the question
becomes: Can we use moment based techniques to determine
numerically fY (y) from the knowledge of a finite collection of mo-
ments {µY (αi) | i = 1, . . . ,M}? We shall consider two lines of
approach to solve this problem and compare the results with a
standard Laplace inversion method.

The possibility of combining the maximum entropy method
with fractionalmoments and how it improves on the use of integer
moments, has been explored in Novi-Inverardi and Tagliani (2003)
formore details on themethod of choice of the fractionalmoments.
We present a summary of it in Section 2.1.2 below.

How to use the integer moments directly, combined with a
twist on a probabilistic version of Bernstein approximation
method, has been proposed in Mnatsakanov (2011), who applied
an idea proposed by Mnatsakanov and Ruymgaart (2003) to ob-
tain the density of a probability distribution from the knowledge
of its Laplace transform. We should also mention Mnatsakanov
(2008a,b) in which the author explores issues related to the speed
of convergence on the approximations involved.

The performance of the two methods is rated against a Fourier
based method of inversion of the Laplace transform, which in this
case is possible due to the fact that we have enough data (the
knowledge of the Laplace transform of the unknown function). The
conclusion of our study is that the maxentropic method is rather
useful because it uses as input a small number of data points, thus
minimizing instabilities in the inversion procedure.

The rest of the paper is organized as follows. In Section 2 we
review the method of maximum entropy as well as the issue of
how many moments to use and how to choose them. In Section 3
we review Mnatsakanov and Ruymgaart’s technique. In Section 4
we briefly describe Crump’s procedure to approximate the exact
Fourier inversion formula, and in Section 5 we present the results
of the implementation of the different approaches in the context
of three examples. The examples differ in the nature of the singu-
larities of the Laplace transform: in one case the transform can be
inverted by inspection, in the other case we are confronted with a
cut in the complex plane and in the last case, with an essential sin-
gularity. Finally in Section 6 we present some concluding remarks.

2. Reconstruction from fractional moments with the method
of maximum entropy

We shall first review themethod ofmaximumentropy and then
examine the issue of how many and which moments to consider.
The first question to attend to is whether the fractional moments
determine a probability distribution. The issue is settled by the
following two theorems by Lin (1992). Both results assert that a
probability density can bedetermined from its fractionalmoments,
and rely on the fact that an analytic function is determined by
its values on a countable set having an accumulation point in the
domain of analyticity.

Theorem 2.1 (Lin). Let FY be the distribution function of a positive
random variable Y . Let {αn}n≥0 be a sequence of positive and distinct
numbers in (0, a) for some a > 0, satisfying limn→∞ αn = α0 < a.
If E[Y a

] < ∞, the sequence of moments E[Y αn ] characterizes FY .

Theorem 2.2 (Lin). Let FY be the distribution function of a random
variable Y taking values in [0, 1]. Let {αn}n≥0 be a sequence of positive
and distinct numbers satisfying limn→∞ αn = 0 and


n≥1 αn = ∞.

Then the sequence of moments E[Y αn ] characterizes FY .
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