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h i g h l i g h t s

• Optimal reinsurance/investment problem in an unobservable risk model is studied.
• The intensity and jump size distribution are not informed.
• The closed form expressions of the optimal strategies are derived.
• The effect of the safety loading on the optimal strategies is investigated.
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a b s t r a c t

We consider the optimal reinsurance and investment problem in an unobservable Markov-modulated
compound Poisson risk model, where the intensity and jump size distribution are not known but have to
be inferred from the observations of claim arrivals. Using a recently developed result from filtering theory,
we reduce the partially observable control problem to an equivalent problemwith complete observations.
Then using stochastic control theory, we get the closed form expressions of the optimal strategies which
maximize the expected exponential utility of terminal wealth. In particular, we investigate the effect of
the safety loading and the unobservable factors on the optimal reinsurance strategies. With the help of a
generalized Hamilton–Jacobi–Bellman equation where the derivative is replaced by Clarke’s generalized
gradient as in Bäuerle and Rieder (2007), we characterize the value function, which helps us verify that
the strategies we constructed are optimal.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past decade, optimal reinsurance and optimal investment
problems for various riskmodels have gained a lot of interest in the
actuarial literature; see e.g. Browne (1995), Hipp and Plum (2000),
Schmidli (2001), Gaier et al. (2003), Hipp and Schmidli (2004),
Yang and Zhang (2005), Liang (2007), Gu et al. (2010), Liang et al.
(2011a), and references therein.

There are two trends in this literature. In the first one the
insurance risk is modeled by continuous processes. For example,
Promislow andYoung (2005)modeled the risk as Brownianmotion
with drift and obtained an analytical expression for the minimum
ruin probability and the corresponding optimal controls, when
the insurance company also trades in a financial market; see also
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Luo et al. (2008). Bai and Guo (2008) took this one step further
and considered the optimal reinsurance problem, with multiple
risky assets and no-shorting constraint, obtained parallel results
to Bayraktar and Young (2007) and showed that the optimal
strategies for maximizing the expected exponential utility and
minimizing the probability of ruin, are equivalent in some special
cases. Gu et al. (2010) examined a variation of this problem when
the risky asset follows a constant elasticity of variance model.

The second trend is using processeswith jumps tomodel the in-
surance risk. For a compound Poisson risk model, Schmidli (2002)
obtained the optimal strategy for the problem of minimizing the
ruin probability. Under the criterion of maximizing the expected
utility of terminal wealth, Irgens and Paulsen (2004) studied the
optimal controls of reinsurance and investments for insurance
portfolios with the return of risky asset being a jump–diffusion
process. Liang et al. (2011b) discussed the optimal proportional
reinsurance and investment problem to the case that the instan-
taneous rate of investment return follows an Ornstein–Uhlenbeck
process. Besides, Liang and Guo (2008) found the optimal strategy
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which maximizes the adjustment coefficient for the compound
Poisson risk processes. For further deliberations see Liu and Ma
(2009) and Zhang and Siu (2012).

As suggested by Asmussen and Albrecher (2010, Chapter VII, p.
165), we model the environment by a Markov chain, i.e., take the
intensity and the claimprocess to bemodulated by aMarkov chain.
We further assume that the environment process is not directly
observable and has to be inferred from the observation that the
insurance company has from claims. Hidden Markov models have
been used in optimal investment problems before but these were
used to model the asset prices not the insurance risk as in this
paper. A notable exception is Bayraktar and Poor (2008), in which
the optimal time to change premiums is analyzed by formulating
the problem as a quickest change detection problem. The rest of
the literature mostly models the fact that the drift of the traded
asset is not directly observable; see Lakner (1995, 1998), Sass and
Haussmann (2004), Rieder and Bäuerle (2005), Bai and Guo (2007)
and Liang et al. (2011b). Bäuerle and Rieder (2007) is an exception.
This paper solves an optimal investment problem for a financial
asset which follows a geometric Brownian motion with Poisson
jumps with unobservable intensity. In the problem we consider,
we are going to model the insurance risk process as a compound
Poisson process (while the asset price process follows a geometric
Brownian motion), with both unobserved intensity and claim
size.

The main objective of our paper is to solve the optimal propor-
tional reinsurance and investment problem for an unobservable
Markov-modulated compound Poisson risk model, where the in-
tensity and jump size distribution are not directly observable. This
provides an important extension to the current set of models as
the nature of claims (which we model as a hidden Markov chain)
changes over time and the insurance company would have to re-
act to those changes by modifying the reinsurance policy. The in-
surance company can explicitly filter out the Markov chain (i.e.
derive the posterior probability distribution of the states of the
Markov chain) using the observed claim arrivals using Lemma 3.1,
and respond to the changes by implementing the optimal reinsur-
ance policies described in Sections 4.2 and 4.3. By analyzing the
effects of safety loading on the optimal strategies we are deter-
mining the maximum amount the reinsurance company charges
for the risk it is taking. Using a recently developed results from
filtering theory (see Bayraktar and Ludkovski, 2009), we reduce
the partially observable control problem to an equivalent problem
with complete observations. (For other recent methodological de-
velopments on the filtering problem of jump processes, also see
Elliott et al., 2010, Elliott and Siu, 2012.) Our main result is on de-
termining the optimal reinsurance problem and investigating the
effect of the safety loading and the unobservable factors on the op-
timal reinsurance strategies. With the help of a generalized Hamil-
ton–Jacobi–Bellman equation where the derivative is replaced by
Clarke’s generalized gradient as in Bäuerle and Rieder (2007), we
verify the optimality of the optimal investment and reinsurance
strategies we propose.

The rest of the paper is organized as follows. In Section 2, the
model and assumptions are given. In Section 3, we reduce the
partially observable control problem to an equivalent problem
with complete observations, and derive the generalized Hamilton–
Jacobi–Bellman equation. In Section 4, we investigate the ex-
istence and uniqueness of the optimal reinsurance strategies
under both expected value principle and variance principle and
obtain the optimal reinsurance policies. Here, we also analyze the
effect of safety loading on the optimal reinsurance policies (in Sec-
tions 4.2 and 4.3). In Section 4.4, we investigate the influence of
the unobservable factors on the optimal reinsurance strategies,
and find that the optimal reinsurance strategy in the risk model
with unknown jump intensity is always less or equal to the one in

the risk model with known intensity. Using the notion of general-
ized Hamilton–Jacobi–Bellman equationwe characterize the value
function, and prove that the optimal investment and reinsurance
policies we propose are optimal (in Section 4.5).

2. Model formulation

Under the Markov-modulated compound Poisson risk model,
the surplus process for the insurance company is given by

dXt = cdt − dSt , (2.1)

where c is the premium rate at time t and

St =

 t

0


i∈E

1{Ms=i}dS(i)
s ,

represents the aggregate claims up to time t . Here, S(1), . . . , S(d)

are independent compound Poisson processes with intensities and
jump size distributions (λ1, ν1), . . . , (λd, νd), respectively.We also
define the total measure v = ν1 + · · · + νd, and denote by fi(·) the
density of νi with respect to v. The process (Mt) in the expression
for the aggregate claims is a continuous-time Markov chain with
state space E = {e1, . . . , ed}, where ek is the k-th unit vector in Rd.

We denote by Q0 = (qij) the infinitesimal generator of M .
Therefore, (λ̄t , ν̄t) := ((λ, ν)′Mt) where (λ̄, ν̄) = ((λ1, ν1), . . . ,
(λd, νd)) ∈ Rd

+
× Rd

+
, i.e., as long as Mt = ej, jumps arrive at rate

λj and jump size distribution νj. Without loss of generality we will
assume that

λ1


yf1(y)dy ≤ λ2


yf2(y)dy ≤ · · · ≤ λd


yfd(y)dy. (2.2)

Denote by σ0 = 0, σ1, σ2, . . . the jump time points of the
Poisson process St ,

σl := inf{t > σl−1 : St ≠ St−}, l ≥ 1

and by Y1, Y2, . . . the R-valued marks observed at these arrival
times:

Yl = Sσl − Sσl− , l ≥ 1.

As usual, we assume that the claim amounts Yl is independent of
claim-number process aswell asMt , and bounded from abovewith
Yl > 0. In terms of the counting randommeasure

N((0, t], A) :=

∞
l=1

1{σl≤t}1{Yl∈A},

where A is a Borel set in R, we can write the observation process St
as

St =

 t

0


yN(ds, dy).

In what follows wewill assume that the insurer only knows the
distribution of M0, but is not informed about the intensity λi and
jump size distributions νi, i = 1, . . . , d.

Further, we allow the insurance company to continuously
reinsure a fraction of its claim with the retention level qt ∈ [0, 1],
and the reinsurance premium rate at time t is δ(qt). Moreover,
the company is allowed to invest its surplus in a financial market
consisting of a risk-free asset (bond or bank account) and a risky
asset (stock or mutual fund). Specifically, the price process of the
risk-free asset is given by

dRt = rRtdt, r > 0,

where r is the risk-free interest rate. A commonly-used model for
stock price is that it follows a geometric Brownian motion. That is,
the price Pt of a stock satisfies a stochastic differential equation

dPt = aPtdt + σPtdWt ,
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